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Abstract 

 

 An upward Vertical Flow Treatment Wetland (uVFTW) has been designed to use 

anaerobic and aerobic microbial processes to bioremediate groundwater contaminated 

with chlorinated hydrocarbons.  Hydraulic short-circuiting has been a problem with 

uVFTWs.  Corbin (2008) estimated that for a uVFTW constructed at Wright Patterson 

AFB to treat contaminated groundwater, groundwater flowed through less than 50% of 

the wetland’s volume, and that the actual mean residence time (1.38 days) was 

significantly less than the 8.75 days that would be achievable with uniform flow through 

the wetland cell. 

 The objective of this research is to investigate how the hydraulics of uVFTWs 

affects treatment efficiency.  A sub-objective is to propose uVFTW design strategies that 

can be used to maximize treatment efficiency.  To accomplish this, a model of a three-

layer uVFTW that couples hydraulics and degradation kinetics was built using the 

MODFLOW-based Groundwater Modeling Software.  The model was applied, using data 

collected by Corbin (2008) and literature values for degradation rate constants, to 

estimate the effectiveness of various engineering solutions aimed at improving overall 

treatment efficiency. 

 The results indicate that, compared to a baseline model, which was constructed to 

approximate the existing Wright Patterson AFB uVFTW and had a mean residence time 

(tau) of 6.19 days, all of the proposed engineering solutions would be effective in 

increasing the mean residence time.  Based on the actual flow through the wetland, and 
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assuming the entire wetland volume was used (i.e., no hydraulic short-circuiting) the 

nominal hydraulic residence time of the wetland cell would be 9.50 days.  Using model 

simulations to assess the impact of various designs aimed at improving hydraulic 

performance, the mean residence time increased 10% (tau = 6.89 days) to 180% (tau = 

17.5 days) from the base line tau of 6.19 days.    

 The effect on treatment efficiency, however, was less clear.  While there was a 

significant improvement in treatment efficiency when comparing the proposed 

engineering solutions and the baseline model, almost the entire improvement occurred 

with a very small increase in mean hydraulic residence time, from 6.19 days to 6.89 days.  

Treatment efficiency was essentially unchanged as mean hydraulic residence time 

increased from 6.89 days through 17.45 days.  This is due to the relation between the 

degradation time constant, which is determined by the degradation rate, and the hydraulic 

residence time, tau.  For the baseline conditions, the first-order degradation rate constant 

for the influent contaminant, tetrachloroethylene (PCE), was 0.4 d
-1

.  This corresponds to 

a half-life (i.e., the degradation time constant) of PCE of 1.7 days.  Since the degradation 

time constant is comparable, but smaller than, the baseline tau of 6.19 days, an increase 

in tau leads to improved destruction efficiency.  However, when tau is sufficiently large 

compared to the degradation half-life, increases in tau have negligible impact on 

efficiency.        

 This study demonstrates that a quantitative understanding of contaminant 

degradation kinetics is important in making decisions regarding constructed uVFTW 

hydraulics.  Hopefully, this study will serve to guide designs of future uVFTWs. 
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MODELING VERTICAL FLOW TREATMENT WETLAND HYDRAULICS TO 

OPTIMIZE TREATMENT EFFICIENCY 

 

I. Introduction 

 

1.1 Background 

 An upward Vertical Flow Treatment Wetland (uVFTW) has been designed to use 

anaerobic and aerobic microbial processes to bioremediate groundwater contaminated 

with chlorinated hydrocarbons (Amon et al., 2007).  In the design that has been used at 

Wright Patterson AFB (Amon et al., 2007) the tetrachloroethylene- (PCE-) contaminated 

groundwater is pumped into the bottom gravel layer of the wetland cell.  The water then 

flows upward through three different cell layers, where bacteria biodegrade the 

contaminants.  Treated water then exits over a weir at one end of the rectangular cell.  

The design objective is to maximize treatment efficiency. 

 Hydraulic short-circuiting has been a problem with uVFTWs.  Corbin (2008) 

estimated that for the uVFTW at Wright Patterson AFB, groundwater flowed through less 

than 50% of the wetland’s volume.  Corbin (2008) also calculated that the actual mean 

residence time (1.38 days) was significantly less than the 8.75 days that would be 

achievable with uniform flow through the cell. 

 The understanding of the hydraulics of constructed wetlands and the processes 

whereby contaminants are degraded has improved dramatically in the last decade.  Initial 

models of constructed wetlands were little more than “black boxes,” giving little 

understanding of the biological and chemical processes occurring (Langergraber et al., 
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2009).  Recent mechanistic models, although quite complex, are capable of simulating 

multiple biological and chemical processes (Langergraber et al., 2009).  Few of the 

numerical models currently in use deal with subsurface flow in constructed wetlands, and 

most of those simulate horizontal flow, rather than vertical flow (Langergraber, 2008).  

Upward vertical flow treatment wetlands are an even smaller subset of vertical flow 

wetlands, and there have been very few studies modeling their hydraulics. 

 

1.2 Research Objective 

The objective of this research is to investigate how the hydraulics of uVFTWs 

affects treatment efficiency.  A sub-objective is to propose uVFTW design strategies that 

can be used to maximize treatment efficiency. 

 

1.3 Specific Research Question 

1) What design parameters have the greatest impact on treatment efficiency?  Would 

altering the ratio of cell length to width to depth, relative layer thickness, or influent 

piping configuration improve treatment efficiency? 

2) Based on the answer to question 1, what design changes can be implemented to 

maximize treatment efficiency?  How much of an effect on treatment efficiency would 

these design changes have? 

 



 

3 

1.4 Research Approach 

1) Conduct a literature review.  In addition to seeking information on whether this 

has been tried or modeled before (i.e., how have models been applied to predict treatment 

efficiency as a function of hydraulics and degradation kinetics in constructed wetlands?), 

the literature review will be used to determine typical values for environmental and 

design parameters, as well as typical treatment efficiencies.  The literature review will 

also include case studies, where the impact of hydraulics and degradation kinetics of 

constructed wetlands (and particularly uVFTWs) on overall treatment efficiency has been 

assessed.   

2) Build a generic model of a three-layer uVFTW that couples hydraulics and 

degradation kinetics.  For simplicity, biodegradation will be described using first-order 

kinetics, although the first-order rate constant can be different in the different layers.  The 

validity of the first-order model will be assessed in the literature review.   

3) Use the model to conduct sensitivity analyses to see how varying design 

parameters (location of influent piping, baffle placement, cell dimensions, etc.) as well as 

environmental parameters (degradation rates, existence of high conductivity flow paths 

that may cause short circuiting), affect treatment efficiency. 

4) Apply the model, using data collected by Corbin (2008) and literature values for 

degradation rate constants for the uVFTW located at Wright-Patterson AFB, to estimate 

the effectiveness of various engineering solutions at improving overall treatment 

efficiency. 
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1.5 Scope and Limitations of Research 

 The most significant limitation of this research is that it is a modeling study, and 

therefore depends on the applicability of a number of simplifying assumptions, and that 

the only data that are available come from the single uVFTW being used to treat 

chlorinated hydrocarbons in existence.  Thus, model validation may not be achievable in 

this study.  However, it is hoped that development and application of the model will 

provide insights into how uVFTWs can be designed to more efficiently treat water 

contaminated by chlorinated hydrocarbons.   

 

1.6 Definition of Terms 

Term Definition 

FWSW Free Water Surface Wetland 

 

HSFW Horizontal Subsurface Flow Wetland 

 

VFTW Vertical Flow Treatment Wetland.  The suffix “u” or “d” will be used 

to distinguish between upward flow (uVFTW) and downward flow 

(dVFTW) treatment wetlands. 

 

CVOC Chlorinated volatile organic compound.  In general, they have high 

vapor pressures, low-to-medium water solubility, and low molecular 

weights.  CVOCs are ground-water contaminants of concern because 

of very large environmental releases, human toxicity, and a tendency 

for some compounds to persist in and migrate with groundwater to 

drinking water supply wells (U.S.G.S., 2010). 

 

Halorespiration Process of anaerobic microbial respiration where microbes gain 

energy through the use of a halogenated compound (compound 

containing fluorine, chlorine, bromine, or iodine) as a terminal 

electron acceptor (Lorah et al., 2007). 
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Term Definition 

Redox Oxidation-Reduction.  A general term describing reactions involving 

the transfer of electrons from the oxidized compound 

(reductant/electron donor) to the reduced compound (oxidant/electron 

acceptor). 

 

Methanogenesis An oxidation-reduction reaction involving the reduction of carbon 

dioxide to methane.  Under sufficiently reducing conditions, 

methanogenesis is the dominant oxidation-reduction reaction. 

 

Porosity, n Total porosity is defined as the ratio of the volume of void spaces (Vv) 

to the total volume (VT)  in a porous medium: 

 

   
  

  
 (1) 

Effective porosity is the percentage of interconnected pore spaces, and 

is always less than total porosity (Domenico and Schwartz, 1990). 

 

Retardation 

Factor 

Ratio of the average flow velocity of groundwater due to advection to 

the flow velocity of a sorbing contaminant (Domenico and Schwartz, 

1990): 

 

     
  

 
   (2) 

where, 

 ρb Soil bulk density [M L
3
] 

 n Porosity 

 Kd Sorption distribution coefficient [L
3
 M

-1
] 

 

Use of a retardation factor implicitly assumes linear, equilibrium 

partitioning of the contaminant between the sorbed and dissolved 

phases, characterized by the distribution coefficient, which is the ratio 

of equilibrium contaminant concentrations in the sorbed and dissolved 

phases. 

 

Critical Flow In a uVFTW, critical flow is the maximum flow that can be applied 

per acre prior to fluidizing the bed, and has units of [L
3
 T

-1
 L

-2
] 

(Pardue, 2005). 
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Term Definition 

Hydraulic 

Conductivity 

The capacity of a medium to transmit water.  Typically determined 

experimentally using a number of techniques and applying Darcy’s 

Law (Domenico and Schwartz, 1990): 

 

        (3) 

where, 

   Volumetric flow [L
3
 T

-1
] 

   Cross sectional area perpendicular to the flow 

direction [L
2
] 

    Hydraulic gradient [-] 

 K Hydraulic conductivity [L T
-1

] 

 

RTDF The Residence Time Distribution Function, f(t), describes the 

probability that water or a conservative tracer will spend a given 

amount of time in a reactor bed.  Typically displayed graphically with 

RTDF on the y axis (units of inverse time), and time on the x axis 

(Clark, 2009). 

 

Mean residence 

time, τ or tau 

The mean residence time, or τ (tau), is the first moment of the RTDF, 

f(t), and is given by (Clark, 2009): 

 

     
 

 
        (4) 

 

For discrete data, this equation becomes: 

 

      
             

 
  

         

 
          

      
    (5) 

 

Variance 

(second 

moment) 

 

The variance, also known as the second moment about the mean of the 

RTDF, f(t), describes the spread of the RTDF (Clark, 2009): 

 

                  
 

 
 (6) 

 

For discrete data: 

 

      
        

 
   

 

 
             

 
          

      
    (7) 
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Term Definition 

Dimensionless 

variance 

The dimensionless variance allows an evaluation of how close a 

residence time distribution is to a perfect mixer or plug-flow reactor: 

 

   
  

  

  
 (8) 

 

For the perfect mixer   
   , while for the plug-flow reactor   

   .  

For most reactors,   
  is bounded between 0 and 1 (Clark, 2009). 

 

tbar Nominal, or theoretical, mean residence time [T].  Calculated by: 

 

      
  

 
 (9) 

where, 

 V Volume of treatment wetland [L
3
] 

 n Porosity [-] 

 Q Volumetric flow rate [L
3
 T

-1
] 

 

STELLA Structural Thinking Experiential Learning Laboratory with Animation.  

Software tool designed to model complex dynamic systems (isee 

systems, 2010). 
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II. Literature Review 

 

2.1 Review of Treatment Wetland Designs and Purposes 

 

 Treatment wetlands have been used for decades to treat a variety of wastewaters, 

including municipal wastewater, wastewater from mining operations, industrial 

wastewater, and water contaminated by livestock operations (Cole, 1998).  There are 

several different types of treatment wetlands, each having advantages and disadvantages 

depending on the type of wastewater to be treated.  Treatment wetlands may be divided 

into two broad categories: surface flow and subsurface flow. 

 In a Free Water Surface (FWS) treatment wetland, the water is exposed to the 

atmosphere as it flows horizontally through the cell (Figure 1).  Contaminants are treated 

or removed through sedimentation, filtration, interaction with the aquatic plant root zone, 

or other processes.  FWS treatment wetlands are typically used for storm water runoff or 

for tertiary treatment of wastewater.  Their main advantage is their ability to handle pulse 

flows and changing water levels.  Their main disadvantage is reduced efficiency during 

sub-freezing weather.  An unintended benefit is the creation of wildlife habitat (Kadlec 

and Wallace, 2009). 

 FWS treatment wetlands have been used to treat chlorinated hydrocarbons 

(Kadlec and Wallace, 2009).  At a site in Minnesota, contaminated groundwater flowed 

into a dredged channel which conveyed the water to a lake.  The channel was filled and 

planted, converting it to a treatment wetland.  At the Schilling Farm Project in Michigan, 

a FWS treatment wetland was constructed in the path of a TCE-contaminated 

groundwater plume (Kadlec and Wallace, 2009). 
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 Keefe et al. (2004) evaluated the fate of volatile organic compounds in a wetland 

constructed for the treatment of wastewater treatment plant effluent.  The wetland is a 

variation on the FWS system, with flow proceeding alternately through 5 deep zones and 

6 shallow zones.  Removal efficiencies for the compounds studied ranged from 63% to 

87%.  The model used was not a mechanistic model, so the specific pathway by which 

mass was removed was not simulated (though the investigators assumed volatilization 

was the dominant removal pathway) (Keefe et al., 2004). 

 

 

 
 

 

 In a subsurface flow treatment wetland, the water flows entirely beneath the 

surface and all treatment occurs beneath the surface, as well.  Since the water is not 

exposed to the surface, there is no risk of human contact, and more polluted influent may 

Figure 1:  Typical Free Water Surface Treatment Wetland 

 
Source: Sandec/Eawag 
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therefore be treated.  These wetlands are commonly used for secondary treatment of 

residential wastewater, either for individual homes or small communities.  Their main 

advantage is they can operate in freezing conditions.  Their main disadvantages are a 

propensity for clogging of the subsurface media and smaller inlet flow rate (Kadlec and 

Wallace, 2009). 

 Subsurface flow treatment wetlands may be further divided into horizontal and 

vertical flow.  A horizontal subsurface flow treatment wetland (HSFW) is built with a 

sloped bottom to ensure flow in the desired direction (Figure 2).  Influent is piped into the 

cell just below the surface, at the up-gradient end.  The contaminated water flows 

horizontally through a gravel bed, where it is treated through contact with plant roots.  

The effluent is collected near the bottom of the down-gradient end (Kadlec and Wallace, 

2009). 
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 A vertical flow treatment wetland is typically understood to mean downward 

vertical flow (dVFTW).  In this type of system, the treatment wetland is “pulse loaded” 

with a large influx of contaminated water, which is then treated as it moves downward 

through the cell (Figure 3).  This type of system provides a higher level of oxygen than a 

horizontal subsurface flow system, and is therefore capable of oxidizing ammonia.  

Downward VFTWs are capable of handling wastewater containing high levels of 

ammonia, such as landfill leachate and food processing wastes (Kadlec and Wallace, 

2009). 

 

 

Figure 2:  Typical Horizontal Subsurface Flow Treatment Wetland 

 
Source: Sandec/Eawag 

 

Source: Sandec/Eawag 
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 Upward VFTWs, such as the one constructed at Wright Patterson AFB in 2000, 

are a more recent design.  The impetus for this specific VFTW was the work of Lorah 

and Olsen (1999), who observed that trichloroethylene (TCE) and 1,1,2,2-

tetrachloroethane (TeCA) in a plume of contaminated groundwater in a natural wetland 

underwent anaerobic reductive dechlorination to the daughter products 1,2-

dichloroethylene (cDCE), vinyl chloride (VC), 1,1,2-trichloroethane (1,1,2-TCA), and 

1,2 dichloroethane (1,2-DCA) as the plume proceeded along an upward flow path from 

an aerobic sand aquifer through an anaerobic region of a wetland (Lorah and Olsen, 

1999).  Conditions in the anaerobic region were iron-reducing, sulfate-reducing, and 

methanogenic.  In addition, the organic carbon-rich wetland supplied an abundant 

Figure 3:  Typical Downward Vertical Flow Treatment Wetland 

 
Source: Sandec/Eawag 
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quantity of electron donors, eliminating a common limiting factor to the reductive 

dechlorination pathway (Lorah and Olsen, 1999). 

 While Lorah and Olsen (1999) recognized how anaerobic processes could 

naturally biodegrade chlorinated hydrocarbons in a wetland, Amon et al. (2007) realized 

that a combination of anaerobic and aerobic processes in a constructed wetland could be 

used to biodegrade chlorinated ethenes.  Specifically, aerobic microbial populations, 

using methane as a primary substrate, produce non-specific oxygenases which 

cometabolically degrade chlorinated ethenes like TCE, cDCE, and vinyl chloride 

(Bradley, 2003).  An upward VFTW, in which the contaminated water flows first through 

an anaerobic region and then through an aerobic root zone, would allow both anaerobic 

and aerobic processes to operate with the added benefit that methane produced in the 

anaerobic region could be used as the primary substrate to support cometabolic 

degradation of the chlorinated ethenes in the aerobic region. 

 

2.2 Frequency of Use of Upward VFTW 

 Upward VFTWs are a relatively recent development, and this is reflected in the 

paucity of information in the literature relative to horizontal flow and downward VFTWs.  

In 1994, Hans Blix published an excellent survey of the history of the use of treatment 

wetlands and the (then) current state of technology, covering 104 subsurface flow and 70 

FWS treatment wetlands (Blix, 1994).  He refers to two pilot scale uVFTWs constructed 

in Australia for the treatment of municipal wastewater.  Both were gravel bed systems in 

which adsorption and contact with the root zone were the primary mechanisms of 

contaminant removal (Blix, 1994). 
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 Farahbakhshazad and Morrison (2000) profiled a uVFTW built in 1997 near 

Piracicaba, Brazil used to remove ammonia, nitrate, and phosphate from the wastewater 

of a small (1,000 people) community.  By obtaining samples from three locations within 

the cell and two depths per location, the authors found that soil efficiency for the removal 

of ammonia was not uniform throughout the cell.  They speculated this was due to 

channeling and short circuiting in the subsurface, but since the authors lacked data on 

hydraulic head and conductivity, they were not able to make a definitive conclusion 

(Farahbakhshazad and Morrison, 2000). 

 Kassenga and colleagues conducted bench-scale experiments using an upflow 

column designed to determine optimum soil composition and conditions for attenuation 

of chlorinated volatile organic compounds, specifically TCE, cDCE, and 1,2-DCA 

(Kassenga et al., 2003).  The paper, however, does not refer to the Wright Patterson 

uVFTW, which was still very new at the time of the study.  Kassenga et al. (2003) state 

“it was necessary to conduct bench-scale studies to investigate the feasibility of using 

constructed wetlands for treatment of VOCs,” implying that the existence of a full-scale 

system was not known.  Pardue (2005) published a summary of bench-scale research into 

using upflow columns to treat VOC-contaminated groundwater.  Determinations were 

made regarding the genetic identification of halorespirers, physical and chemical 

properties of various soil types, and locations and rates of reactions.  The effect on 

treatment efficiency was evaluated with respect to vegetation type and salinity and 

inoculation of soil with halorespirers.  He refers to three pilot-scale systems currently in 

different stages of EPA approval: Superfund sites in Connecticut and Massachusetts, and 
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a site along Chesapeake Bay within the Aberdeen Proving Grounds in Maryland (Pardue, 

2005).  

 Wallace and Kadlec (2005) profiled a pilot-scale uVFTW used to degrade BTEX 

at the site of a former refinery.  Contaminated water was introduced in the bottom layer, 

then flowed vertically through gravel and sand layers.  The water then flowed 

horizontally across the sand layer to the outlet.  This flow design was noted as potentially 

unstable, and short-circuiting was observed.  In the full-scale system, the vertical upflow 

design was abandoned in favor of a center-fed, radial horizontal subsurface flow design. 

 In a recently published textbook on treatment wetlands (Kadlec and Wallace, 

2009), the authors refer to uVFTWs only in passing.  They make a general statement that 

uVFTWs are used to promote anaerobic degradation.  In the chapter on organic chemicals 

the uVFTW at Wright-Patterson AFB is specifically referred to in only two sentences and 

no information is given as to how the treatment wetland operates.  The authors cite two 

AFIT Master’s theses in this passage, although interestingly, the two cited theses 

(Entingh, 2002; and Blalock, 2003) do not deal with degradation of organic chemicals, 

but rather with characterizing the hydraulic properties of the treatment wetland cell.  In 

any event, with the exception of the Wright-Patterson AFB uVFTW, Kadlec and Wallace 

(2009) do not cite any examples of the use of uVFTWs to treat chlorinated hydrocarbons. 

 The first peer-reviewed article on the Wright Patterson AFB uVFTW was 

published by Amon et al. (2007) of Wright State University.  The authors were aware of 

no other uVFTWs then in existence being used to treat chlorinated organic compounds.  

See section 2.7 Case Studies for further information on this paper, as well as master’s and 

PhD research involving the uVFTW at WPAFB.   
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2.3 Typical Values for Environmental and Constructed Wetland Design 

Parameters 

 Lorah and Olsen (1999) determined that the wetland sediment thought responsible 

for the reductive dechlorination of VOCs was 1.8-3.6m thick and comprised of two 

layers; a lower silty clay layer low in organic carbon (1%), and an upper peat and clay 

layer high in organic carbon (18%).  Average linear groundwater flow velocity in the 

wetland sediment was estimated at 0.6 m yr
-1

.  The redox conditions in the wetland 

sediment were extensively characterized, and the authors noted that the reductive 

dechlorination pathway was most effective under methanogenic conditions.  The authors 

did not evaluate the porosity or hydraulic conductivity of the wetland sediments (Lorah 

and Olsen, 1999). 

 In the study of Kassenga et al. (2003) discussed earlier, two soil mixtures were 

compared:  one containing 20% sand and 80% peat, and the other containing 20% sand, 

40% peat, and 40% Bion soil, a commercially available product derived from agricultural 

waste (Kassenga et al., 2003).  A summary of soil parameters is presented in Table 1. 
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Table 1:  Soil Parameters from Kassenga et al. (2003) 

Parameter 20% sand 

80% peat 

20% sand 

40% peat and 40% Bion soil 

Porosity (n) 0.76±0.04 0.72±0.06 

Retardation Factor (R) cDCE 3.51 

TCE  2.75 

1,1,1-TCA 3.69 

VC  1.07 

cDCE 7.32 

TCE  4.64 

1,1,1-TCA 6.56 

VC  1.20 

Hydraulic conductivity (K) 0.43 m d
-1

 0.11 m d
-1

 

Critical Flow 

Total flow for 18m x 36m-cell 

0.080 m
3 

 d
-1

 m
-2

 

 51.8 m
3
 d

-1
 

0.074 m
3 

 d
-1

 m
-2

 

 48.0 m
3
 d

-1
 

Minimum bed depth for 

effective VC removal 

9.00 m 2.10 m 

 

 

 Pardue (2005) did microcosm and mesocosm work similar in nature to Kassenga 

et al. (2003) (Kassenga did PhD work under Pardue).  Pardue (2005) calculated removal 

rates for 1,1,2,2 tetrachloroacetate, TCE, cDCE, and 1,2 dichloroacetate and determined 

that most removal occurred in the bottom 10 cm of the column (Pardue, 2005).  This was 

based on a flow of 6.41E-03 gallons per minute per m
2
.  Applying this value to the 648 

m
2
 treatment wetland at WPAFB give 4.2 gallons per minute, which is slightly less than 

the 5.5 gallons per minute reported by Corbin (2008).   

 The soil type used in the Wright Patterson uVFTW was characterized as Westland 

soil with silt and clay inclusions, a soil type common to local area fens (Amon et al., 

2007).  A fen is a peat-forming wetland fed by groundwater rather than precipitation, 

which results in a generally high nutrient level in the soil (U.S. EPA, 2009).  Because the 

direction of flow is toward the surface in a fen, this type of soil should be well-suited to 

use in uVFTW (Table 2). 
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Table 2:  Selected Soil Data from Amon et al. (2007) 

Effective Porosity 26% 

Hydraulic conductivity  0.81 m d
-1

 

Inflow rate 54.7 m
3
 d

-1
 

Depth of treatment wetland 1.45 m 

 

 

2.4 Modeling Biodegradation Kinetics of Chlorinated Ethenes in Constructed 

Wetlands 

 The choice of kinetics used to model biodegradation of chlorinated ethenes in a 

treatment wetland cannot be made without an understanding of the primary degradation 

processes occurring in the wetland (Bradley, 2003).  The primary processes that occur in 

a uVFTW are: 

1) Anaerobic reductive dechlorination 

2) Aerobic cometabolism (methane as primary substrate) 

 In anaerobic reductive dechlorination, microorganisms use H2 from fermented 

organic compounds present in organic rich soil as the electron donor, and PCE or TCE as 

the terminal electron acceptor (Figure 4).  This process, also known as chlororespiration, 

results in a net energy gain for the microorganisms.  Anaerobic reductive dechlorination 

results in a chlorine ion being stripped off the PCE molecule and replaced with a 

hydrogen ion.   
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 Anaerobic reductive dechlorination is a stepwise process, meaning PCE is first 

degraded to TCE, which is then degraded to DCE.  Here, the process tends to stall due to 

the inhibitory effect of increasing concentrations of daughter products, as well as the 

increasingly reducing conditions required to strip additional chlorine ions.  As chlorinated 

ethenes become reduced, the effectiveness of reducing pathways is less. 

 Microbes capable of using chlorinated ethenes as electron acceptor must compete 

for electron donors with other microorganisms and other redox processes.  The redox 

Figure 4:  Anaerobic Reductive Dechlorination of PCE to TCE and TCE 

to cDCE 

Electron donor
-Natural organic carbon
-Humic substances
-Formate, acetate
-Electron donated is in form of H2

Electron acceptor
-PCE, TCE primarily (DCE and VC to much less extent)
-Methanogenic conditions provide best rates of reductive dechlorination.

Microbes

(Dehalococoides
ethenogenes)

H2

2H+ + 2e-C = C

Cl

ClCl

Cl

ClH

C = C

Cl Cl

H+ + Cl-

(PCE) (TCE)

2H+ + 2e-C = C

Cl

ClH

Cl

HH

C = C

Cl Cl

H+ + Cl-

(TCE)
(cDCE)

 

Source:  material adapted from Vogel et al. (1987) 



 

20 

potential governs how successful the process of anaerobic reductive dechlorination will 

be (Table 3).   

 

 

Table 3:  Gibbs Free Energy Change for Selected Processes 

Redox Environment Gibbs free energy change  

Oxygen reducing -502 kJ/mol  

Nitrate reducing -477 kJ/mol  

Manganese reducing -339 kJ/mol  

 -164 kJ/mol PCE to TCE
1
 

 -161 kJ/mol TCE to cDCE
1
 

 -141 kJ/mol cDCE to VC
1
 

 -154 kJ/mol VC to Ethene
1
 

Iron reducing -117 kJ/mol  

Sulfate reducing -105 kJ/mol  

CO2 reducing 

(methanogenic) 

-92 kJ/mol  

Source:  (U.S. EPA, 1999), 
except for:  

1
 (He et al., 2002) 

 

 

 Table 3 indicates that anaerobic reductive dechlorination will occur to a much 

reduced extent under nitrate and manganese reducing conditions as compared to 

methanogenic conditions.  Bradley (2003) noted that PCE will undergo anaerobic 

reductive dechlorination under all but aerobic conditions, TCE will undergo anaerobic 

reductive dechlorination under iron reducing, sulfate reducing, or methanogenic 

conditions, DCE will undergo anaerobic reductive dechlorination under either sulfate 

reducing or methanogenic conditions, and VC will undergo anaerobic reductive 

dechlorination only under methanogenic conditions (Bradley, 2003).   
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 A primary substrate to support aerobic cometabolism of chlorinated ethenes (i.e., 

methane) may be produced from CO2 and H2 via anaerobic methanogenesis.  This 

methane is then used by methylotrophs, which produce methane monooxygenase (MMO) 

enzyme under aerobic conditions to catalyze oxidation of methane to produce CO2.  

MMO is a nonspecific enzyme that is also capable of aerobically degrading TCE, DCE, 

and VC to CO2, without accumulations of harmful intermediate products.  The 

methylotroph itself oxidizes the primary substrate for growth and energy, but appears to 

derive no benefit from the cometabolic oxidation of the chlorinated ethene (Figure 5).  

The extent of cometabolism is typically limited by the availability of the primary 

substrate, methane (Bradley, 2003).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Aerobic Oxidation of TCE to CO2 (cometabolism) 

Methane (CH4)
(primary carbon 

substrate, supplied 
from anaerobic 

reduction of CO2)

Intermediate 
products

Microbes
(methanotrophs)

ClH

C = C

Cl Cl

(TCE)

CO2

NADH,
O2

ClH

C = C

Cl Cl

(TCE epoxide)

O

CL-

H2O
CO2

Metabolism

Cometabolism

Methane
Monooxygenase
(MMO) 

Source:  Material adapted from McCarty (1997) in Subsurface Restoration, p374 
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 With an understanding of the primary degradation processes that occur in a 

uVFTW, one can then look at kinetics.  Monod kinetics relates the growth rate of a 

microorganism to the concentration of a limiting substrate, and it has been used to 

describe the growth rate of microorganisms engaged in anaerobic reductive 

dechlorination (Suarez and Rifai, 1999). 

       

 

    
 (10) 

where, 

 µ: growth rate of biomass (microorganism) [T
-1

] 

 µmax: max growth rate of biomass (microorganism) [T
-1

] 

 S: growth-limiting substrate concentration [M L
-3

] 

 Ks: substrate concentration that results in a growth rate,  , of µmax/2 

[M L
-3

] 

 

 The rate of biomass growth is related to the rate of substrate consumption by 

equation (11) (Kovarova-Kovar and Egli, 1998). 

   
 

 
 

  

  
 (11) 

where, 

 Y: yield coefficient, mass biomass per mass substrate [M M
-1

] 

 B: biomass concentration [M L
-3

] 
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 Substituting (11) into (10), rearranging the expression, and introducing a negative 

sign to reflect the fact that substrate is being consumed gives an expression for the rate of 

change in substrate (chlorinated ethene) concentration. 

 

 
  

  
  

    

 
  

 

    
  (12) 

 

where, 

 Y: yield coefficient, mass biomass per mass substrate [M M
-1

] 

 B: biomass concentration [M L
-3

] 

 

From Equation (12), it can be seen that when S<<Ks: 

 

 
  

  
  

    

 
  

 

  
  (13) 

 

Rearranging, 

 

 
  

  
   

      

    
   (14) 

 

It can be seen from this that when S<<Ks, dS/dt can be approximated by the first order 

expression: 

 
  

  
     (15) 

 

where, 
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  (16) 

 

 First-order rate constants that have appeared in the literature are reported in Table 

4 and Table 5.   

 

 

Table 4:  First Order Degradation Rate Constants 

 PCE to TCE TCE to cDCE cDCE to VC VC to Ethene 

Anaerobic 

reductive 

dechlorination 

Mean: .010 

90
th

%: .022 

Range: 0-0.080 

(Suarez and 

Rifai, 1999) 

 

Mean: .003 

90
th

%: .005 

Range: 0-0.023 
(Suarez and 

Rifai, 1999) 

 

Mean: .003 

90
th

%: .005 

Range: .001-

.006  

(Suarez and 

Rifai, 1999) 

 

Mean: .001 

90
th

%: n/a 

Range: 0-0.007 

(Suarez and 

Rifai, 1999) 

 

All rates listed are in units of [d
-1

].  Data were taken from Table 7. 

 

 

 

Table 5:  First Order Degradation Rate Constants, Aerobic Cometabolism 

 PCE TCE cDCE VC 

Aerobic 

cometabolism 

 Mean: .15±.02 

(Powell et al., 

2010) 

 

Mean: .948 

90
th

%:  -- 

Range: .105-

1.41 
(Suarez and 

Rifai, 1999) 

 

Mean: .59±.07 

(Powell et al., 

2010) 

 

Mean: .720 

90
th

%:  1.012 

Range: .390-

1.15 
(Suarez and 

Rifai, 1999) 

 

 

 

 

 

Mean: 1.730 

90
th

%: -- 

Range: 1.50-

1.96 
(Suarez and 

Rifai, 1999) 

 

All rates listed are in units of [d
-1

].  Data from Suarez and Rifai (1999) were taken from 

Table 7.  Rates from Powell et al. (2010) are pseudo first-order, and are from lab studies. 
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2.5 Relationship Between Hydraulic Conductivity, Residence Time, and 

Treatment Efficiency 

 The significance of the problem of hydraulic short-circuiting is difficult to 

determine in the case of uVFTWs due to the fact that uVFTWs are relatively recent 

innovations and not many are in use.  Where they have been used, hydraulic short-

circuiting is noted as a potential problem, but the degree to which it is a problem is not 

quantified (Farahbakhshazad and Morrison, 2000; Wallace and Kadlec, 2005). 

 Hydraulic short-circuiting has been studied much more in HSFW treatment 

wetlands and dVFTWs.  Araujo et al. (2008) modeled the problem of clogging in HSFW 

treatment wetlands, noting that dead zones and hydraulic short-circuiting are common 

ramifications of clogging (Araujo et al., 2008). 

 Chazarenc et al. (2003) noted hydraulic short-circuiting and dead zones in 

conducting pulse tracer experiments to determine hydraulic residence time distributions 

in a HSFW in France.  He attributed this to the structural design of the bed, where 

influent is injected at one point in the corner of the bed and effluent is removed at the 

opposite corner, a design which promotes hydraulic short-circuiting (Chazarenc et al., 

2003). 

 Dittrich (2006), in a review of Hungarian usage of HSFWs and dVFTWs, noted 

that hydraulic short-circuiting was a significant problem in both types due in part to 

distribution pipe construction deficiencies and the shape of the wetland (Dittrich, 2006).  

He proposed the use of only gravel as filter media in HSFWs in order to avoid hydraulic 

short-circuiting, and avoiding the use of gravel as filter media in dVFTWs in order to 

increase hydraulic residence time (Dittrich, 2006).   
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 Lightbody et al. (2008) observed hydraulic short-circuiting in a three-cell FWS 

wetland in Georgia.  Between three and six fast flow paths were observed which carried 

water at least 10 times as fast as other areas of the cell, and 20-70% of the flow had a 

residence time less than the nominal residence time (Lightbody et al., 2008).  The authors 

also note that the wetland was carefully designed to ensure uniform flow, with careful 

planting of vegetation, multiple inlet and outlet structures, and a flat base to the cell 

(Lightbody et al., 2008).  The fact that short-circuiting still occurred may indicate the 

difficulty in eliminating this problem by design. 

 In the examples cited above, hydraulic short-circuiting is determined by 

calculating the nominal or theoretical residence time by dividing water volume in the cell 

by the volumetric flow rate.  This is then compared to the mean or first moment of the 

residence time distribution function (RTDF).  If the first moment of the RTDF is less than 

tbar, hydraulic short-circuiting is indicated.  Figure 6 illustrates an example where there 

appears to be short-circuiting, and flow is not going through the entire cell volume. 
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 Typical treatment efficiencies vary widely, due to wetland design, type of 

contaminant, and hydraulic retention time.  Farahbakhshazad and Morrison (2000) 

measured removal rates for nitrate, phosphate, and ammonia for a uVFTW in Brazil.  

Concentration removal for phosphate was 93%, 78% for nitrate, and 50% for ammonia 

(Farahbakhshazad and Morrison, 2000).  The total depth of the bed was 0.45 m, and the 

upper 0.25 m was vermiculite with about 35-60% clay content.  Sampling was conducted 

at three sites within the uVFTW, at two depths per site – 0.25 m (bottom of the 

vermiculite layer) and 0.35 m (bottom gravel layer).  The mechanism of removal was 

adsorption in the bed and precipitation at the surface for phosphate, and plant uptake for 

nitrate and ammonia (Farahbakhshazad and Morrison, 2000).   

Figure 6:  Hypothetical RTDF 
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 Kassenga et al. (2003), in column experiments of cDCE and VC degradation, 

determined the minimum bed depth to degrade influent concentrations of both 

contaminants of 13.67 mg/L to below the maximum contaminant levels (MCLs) specified 

in National Primary Drinking Water Regulations.  VC was determined to be the limiting 

contaminant, requiring the deepest bed depth to degrade the contaminant to below its 

MCL of 2 µg/L.  Based on a first-order rate constant of 0.56 day
-1

, a bed depth of 2.1m 

was required (Kassenga et al., 2003). 

 Lee et al. (2004) evaluated the removal efficiency of a HSFW designed to treat 

swine waste effluent.  Removal efficiency for a variety of effluent constituents was 

evaluated for three hydraulic residence times:  4.3 days, 8.5 days, and 14.7 days (Figure 

7).  There was no consistent trend in removal efficiency as a function of hydraulic 

residence time.  Several constituents (NO3-N, total phosphorus, and PO4-P) exhibited a 

positive correlation between removal efficiency and hydraulic residence time, as would 

be expected, while others (COD, NO2-N, NH4-N, and total nitrogen) appeared to have an 

optimum removal efficiency when the hydraulic residence time was 8.5 days.  The 

authors note that the profiles for nitrate, nitrite, and ammonia may be due to the poor 

nitrification capability of the treatment wetland (Lee et al., 2004).   
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 Dierberg et al. (2005) conducted a rhodamine dye tracer study on a FWS in south 

Florida that exhibited significant hydraulic short-circuiting.  They determined that a small 

volume of the wetland conveyed 44% of the volumetric flow, and that this reduced the 

treatment efficiency for phosphorus in two ways.  First, through the shorter residence 

time; and second, through impaired physical processes such as sedimentation and plant 

uptake.  First-order degradation rate constants for removal of phosphorus in the high 

residence time zones were twice those of the short-circuit zones (0.50 d
-1

 vs. 0.24 d
-1

) 

(Dierberg et al., 2005). 

Figure 7:  Percent Removal as a Function of Hydraulic Residence Time 

 
Source:  Adapted from Table 1 and Table 2 of Lee et al. (2004) 
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 As noted above, although hydraulic short-circuiting of constructed wetlands 

appears to be a problem, proposed engineering solutions to the problem and attempts to 

simulate the effects of implementing proposed solutions on wetland performance are only 

found in the literature infrequently.  In one example, Chazarenc et al. (2003) 

recommended “wide centered injection” at the influent of HSFWs in order to promote 

mixing and prevent dead zones, but did not offer a more detailed explanation, and made 

no attempt to model such a design.  Lightbody et al. (2009) modeled a short-circuiting 

FWS treatment wetland using a stream tube model with dispersion and incorporating 

transverse deep zones as an engineering solution intended to mitigate short-circuiting.  

The deep zones stretched the entire width of the treatment wetland, transverse to the 

direction of flow, and were vegetation-free pools from bottom to top.  The solution was 

thought to improve treatment efficiency via two mechanisms.  First, the water is rapidly 

mixed in a lateral direction, which dilutes contaminant concentrations.  Second, 

transverse deep zones disrupt fast flow paths and reduce the likelihood of any one path 

extending the entire length of the treatment cell (Lightbody et al., 2009).  The authors 

founds that transverse deep zones would increase contaminant removal, provided the 

zone is long enough (in the direction of flow) to completely dissipate the momentum of 

incoming fast-path water.  Further, contaminant removal increases with the number of 

deep zones up to a maximum, beyond which wetland area reserved for contaminant 

treatment drops too low and contaminant removal goes down (Lightbody et al., 2009) 
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2.6 Use of Models to Predict Treatment Efficiency of Constructed Wetlands 

 Lightbody et al. (2009) showed how modeling could be useful in predicting 

efficiency and assisting in wetland design.  This section will examine other such uses of 

modeling.  As the understanding of the hydrological, physical, and chemical processes 

that occur in treatment wetlands has improved, so has the capability to model these 

systems.  Models of treatment wetlands were originally conceived as “black boxes,” 

where concentration in was linked to concentration out by first-order decay coefficients 

(Langergraber, 2008).  Most models in use today are deterministic mathematical models 

which use numerical methods to arrive at solutions to the equations of flow and transport.  

These numerical models allow for heterogeneity in space (e.g., spatially varying 

hydraulic conductivity) and variations in time (e.g., temporally varying influent 

concentrations) (Konikow et al., 2007).   

 Langergraber (2008) provides a review of mechanistic models divided into three 

categories:  models of hydraulic behavior and transport only; models of reactive transport 

under saturated conditions; and models of reactive transport under variably saturated 

conditions.  Of these, the models of reactive transport in saturated conditions are relevant 

to this research.  Using a mixing cell method, a HFTW is divided into numerous equal 

sized cells, within which degradation occurs by first order decay.  This method is a 

simplification of the advection-dispersion equation, and provides a better fit than plug 

flow.  A mechanistic model using STELLA was also presented.  The model incorporates 

six state variables – carbon cycle, nitrogen cycle, oxygen balance, bacteria growth 

(heterotrophic and autotrophic), and water budget.  It predicted effluent BOD, organic 

nitrogen, ammonium, and nitrate concentrations well.  STELLA was also used in another 
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approach to model nitrogen transformation in HFTWs.  Other models use a variety of 

combinations of continuously stirred tank reactors (CSTRs) and plug flow reactors with 

the goal of simplifying the model by reducing the number of parameters required 

(Langergraber, 2008). 

 Langergraber et al. (2009) demonstrates the multi-component reactive transport 

module CW2D, designed to model the degradation of municipal wastewater in a HFTW.  

CW2D is capable of modeling 12 components and 9 processes using Monod kinetics to 

describe degradation.  CW2D is imbedded within the HYDRUS transport program for 

variably unsaturated flow (Langergraber et al., 2009). 

 One of the most widely used groundwater modeling software packages is 

MODFLOW, developed by the U.S. Geological Survey (Konikow et al., 2007).  

MODFLOW uses the finite difference method to arrive at numerical solutions to the 

groundwater flow equation (Harbaugh, 2005).  MODFLOW is a modular software 

package which can be coupled with other packages, particularly packages that model 

transport.  RT3D, Reactive Transport in 3 Dimensions, is a separate software package 

that simulates transport and degradation (Clement, 1997).  RT3D uses the output of 

MODFLOW to determine advective velocities to input into the transport equations.  

RT3D contains built-in programs to simulate many different fate and transport processes, 

including a model for both anaerobic and aerobic degradation of PCE and TCE (Clement, 

1997).  Although MODFLOW and RT3D can be used directly, it is also common to use a 

more user-friendly interface program such as the Groundwater Modeling System (GMS).  

GMS is a Windows-based interface to MODFLOW-2005 and RT3D created by the 

Department of Defense that integrates multiple programs for subsurface flow and 
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contaminant fate and transport (U.S. A.C.E., 2010).  This research effort will use 

MODFLOW-2005 and RT3D within the GMS interface, so further information about 

them is included in chapter 3. 

2.7 Case study:  uVFTW at WPAFB 

 This section will be devoted to summarizing prior research into the hydraulic 

behavior and degradation characteristics of the uVFTW at WPAFB.  The first peer-

reviewed article on the Wright Patterson AFB uVFTW was published in 2007 (Amon et 

al., 2007).  Amon et al. (2007) gives a detailed account of construction and operation of 

the uVFTW, to include inflow rate, physical dimensions of the cell, composition and 

depths of the different layers of the cell, influent piping, types of vegetation planted, and 

piezometer layout (Amon et al., 2007).  Amon notes that while anaerobic reductive 

dechlorination of PCE is a major process in the wetland, at shallow depths, due to the 

availability of methane and root-transported oxygen, oxidative cometabolism is an 

important degradation process, as well (Amon et al., 2007).  Amon et al. (2007) suggest 

the inclusion of wood chips throughout the cell, as well as filling the cell with dirt as it 

fills with water (during construction), as means of avoiding uneven compaction and 

hydraulic short-circuiting (Amon et al., 2007). 

 Many master’s and PhD students at Wright State University and the Air Force 

Institute of Technology have done research on the uVFTW at WPAFB.  Mesocosm 

studies of the soil type used in the uVFTW include Tritschler (2007), Gruner (2008), and 

Powell (2011).  Studies examining biodegradation characterization of the treatment 

wetland include Opperman (2002), Clemmer (2003), Kovacic (2003), Sobolewski (2004), 
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Waldron (2007), and Thompson (2008).  Research into the hydraulics of the cell includes 

Entingh (2002), Blalock (2003), and Corbin (2008). 

 Tritschler et al. (2007) conducted mesocosm experiments to investigate the effects 

of vegetation and seasonal changes on redox parameters within the mesocosm.  She 

determined that selection of plant species had a large impact on the redox conditions 

(Tritschler et al., 2007).  Therefore, the ability of a treatment wetland to degrade 

contaminants would be sensitive to selection of plant species (Tritschler et al., 2007).  

Gruner (2008) conducted mesocosm experiments to characterize bacterial populations of 

methanogens, methanotrophs, and ammonia oxidizers with respect to planted versus non-

planted mesocosms.  Powell (2011) conducted field work characterizing contaminant 

concentrations in the shallow vegetated zone, as well as laboratory microcosm work to 

determine degradation rates for TCE, cDCE, and 1,1,1-TCA in the presence of methane 

oxidizers.  TCE and cDCE were found to degrade with first-order degradation rates, 

while 1,1,1-TCA was not found to degrade (Powell et al., 2010). 

 Kovacic (2003) conducted field sampling to characterize organic acid and 

inorganic anion concentrations in the wetland cell.  He found that organic acid 

concentrations decreased by 93% over the 11 months between December 2002 and 

January 2003 (Kovacic, 2003).  From measurements of dissolved oxygen and oxidative-

reductive potential, he determined that the base of the wetland was aerobic, but that 

quickly changed to anaerobic in the layer immediately above the base.  He also found that 

nitrate and sulfate reducing conditions were correlated with higher concentrations of 

lactate and formate (Kovacic, 2003).   
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 Waldron (2007) conducted field sampling research to characterize concentration 

profiles for PCE, TCE, trans-DCE, cDCE, VC, and ethane at each of the three depths of 

the wetland (Waldron, 2007).  This work was a continuation of similar field work done 

by Sobolewski (2004), Clemmer (2003), and Opperman (2002).  Waldron presented 

summary concentration data for all the sampling – December 2001, January 2003, Fall 

2003, September 2006, October 2006, November 2006, and December 2006 (Waldron, 

2007).  This allowed him to state some observations regarding changes in the uVFTW’s 

treatment efficiency over time: 

1) Influent PCE concentration increased by 94% from Fall 2003 to Fall 2006, but 

treatment efficiency (measured at the top layer, not the effluent weir) held 

constant at 99%.  This has implications for the maximum influent contaminant 

level the wetland cell can handle without the effluent exceeding maximum 

contaminant levels (MCLs). 

2) Reduction of PCE concentrations was less measured at the effluent weir (85.4%) 

compared to the top layer of the wetland cell (99%).  Waldron concluded from 

this that some influent water was bypassing treatment and short-circuiting directly 

to the effluent weir. 

3) TCE concentrations in the middle and upper layers declined substantially from 

Fall 2003 to Fall 2006.  Waldron attributes this to continued maturation of the 

wetland cell. 

4) The concentration of trans-DCE increased significantly over the years, becoming 

the dominant DCE isomer in the wetland cell.   

5) The concentration of VC decreased from 2003 to 2006 by approximately an order 

of magnitude, further indicating maturation of the cell and somewhat allaying 

concerns about build up of this end product. 

 

 Data presented by Waldron show classic reductive dechlorination (Figure 8).  As 

PCE is degraded from the lower to middle layer, concentrations of daughter products 

increase.  These concentrations drop off from middle to upper layers, suggesting either a 

continuation of sequential anaerobic reductive dechlorination, or that aerobic processes 

become more prominent in the upper layer (Waldron, 2007).  Not shown in Figure 8 due 
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to scale are concentration profiles for VC and Ethane, which show zero concentration at 

influent, rising to a peak at the middle layer, then falling back to almost zero at effluent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Thompson (2008) used STELLA to model the movement of oxygen from roots 

into the rhizosphere, as well as aerobic cometabolism of TCE (Thompson, 2008).  He 

determined that low organic carbon concentration in the influent, low copper, high 

oxygen, and high methane concentrations improved destruction of TCE.  Treatment 

efficiency was most affected by hydraulic loading, dropping from 80% to 20% with an 

Figure 8:  Average Contaminant Concentration by Layer 

 
Source:  Waldron (2007) 
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increase in loading from 1 L m
-2

 hr
-1

 to 4 L m
-2

 hr
-1

 (Thompson, 2008).  The current 

loading rate for the uVFTW is about 30 m
3
 d

-1
, which is 0.5 L m

-2
 hr

-1
 (Corbin, 2008). 

 Entingh (2002) was the first to look at the hydraulic behavior of the uVFTW.  He 

describes installation of the grid of 66 piezometer nests, each of which contain 3 

piezometers screened in the lower, middle, and upper layers of the wetland cell (Entingh, 

2002).  Head was measured at all locations, and slug tests were conducted using the 

Bouwer and Rice (1976) method at all locations in order to calculate values of hydraulic 

conductivity.  Contour plots of head and hydraulic conductivity were constructed, which 

indicated regions of preferential flow.  On-site evaluation confirmed this, as areas of 

higher head were soft and could not support the weight of foot traffic.  One area exhibited 

fluidization, with significant mounding and water flowing out of the ground. 

 Because some piezometers were not recovering quickly enough to allow sample 

collection to test for PCE, these piezometers were developed by pumping water into 

them.  26 piezometers in the top layer and 10 in the middle layer were initially developed 

using this technique.  This seems to have altered soil properties immediately surrounding 

the developed piezometers, resulting in changes in calculated hydraulic conductivity 

values of 1 or 2 orders of magnitude in some cases (Table 6).  In order to ensure 

conditions over the entire wetland were the same, the remaining piezometers in the top 

and middle layer were subsequently developed (Entingh, 2002). 

  



 

38 

Table 6:  Geometric Means of Hydraulic Conductivity (m d
-1

) 

 Top Soil Layer Middle Soil Layer Bottom Soil Layer 

Before Developing 0.0011 0.0066 14.8 

After Developing 0.09 0.06 14.8 

Source:  Entingh (2002) 

 

 

 Calculated hydraulic residence times provided further evidence of hydraulic 

short-circuiting.  These ranged from 16.5 hours to 15 days (mean 3 days).  

Approximately 64% of the particles from a MODPATH simulation had residence times 

less than the mean (Entingh, 2002). 

 The next year, Blalock (2003) also examined the hydraulic behavior of the 

uVFTW at WPAFB.  Whereas Entingh (2002) used the Bouwer and Rice (1976) method 

to determine hydraulic conductivity, Blalock (2003) used the Hvorslev method, which 

was deemed more appropriate (Blalock, 2003; Entingh, 2002) 

 Blalock (2003) used MODPATH to determine a cumulative residence time 

distribution function.  Fitting a polynomial equation to this distribution, then taking the 

derivative, gave the residence time distribution function (RTDF).  The mean residence 

time, τ, was then calculated by: 

 

     
 

 
        (8) 

 

where f(t) is the RTDF.  The mean residence time, τ, was then compared to the 

theoretical mean residence time, tbar=Vn/Q, to determine cell volume utilization (Blalock, 
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2003).  Blalock found that the RTDF was bimodal, with one peak at about 1.25 days and 

another, much smaller peak at around 3.0 days (Figure 9).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blalock hypothesized that this pattern could be due to flow leakage or heterogeneous 

hydraulic conductivities.  The mean hydraulic residence time (τ) of the RTDF was 

calculated to be 1.6 days, which is shorter than the calculated theoretical mean residence 

time (tbar) of 2.16 days.  Blalock concluded that this indicated hydraulic short-circuiting, 

with areas of stagnant flow contributing to the long tailing of the RTDF. 

Figure 9:  RTDF Calculated by Blalock (2003) 
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 Corbin (2008) is the most recent study of the hydraulics of the uVFTW at 

WPAFB.  Her work was essentially a replication of and follow-up to the work of Entingh 

(2002) and Blalock (2003).  Field sampling was conducted to determine values of 

potentiometric head and hydraulic conductivity, and these data were then used in a 

computer model to provide insight into the hydraulic behavior of the uVFTW and to 

compare current behavior to prior work (Corbin, 2008).   

 Corbin (2008) represented the wetland in GMS using a three-dimensional grid of 

fixed cell length and width, with cell depth varying by layer (Corbin, 2008).  The wetland 

dimensions of 18 m by 36 m were represented by a grid of cells ½ m square, resulting in 

a 36 x 72 cell matrix.  The overall 1.7 m depth of the wetland cell was divided into nine 

layers.  Having nine layers allowed the 1:1 slope of the walls of the cell to be represented, 

as deeper layers are smaller than shallower ones.  Table 7 summarizes the grid 

construction.  Data from Amon et al. (2007) are included for reference. 
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 In the flow model, the top layer was represented as a constant head boundary. 

Corbin (2008) had attempted to represent the top layer as a general head boundary, but 

determined during model calibration that this resulted in unrealistic head contours a full 

meter above the wetland surface. 

 The influent piping was modeled as a series of injection wells that each 

introduced 0.192 m
3
 d

-1
.  The wells are located in cells 15-65, rows 9, 19, and 29 (Figure 

10). 

 

  

Table 7:  Grid Construction, Corbin (2008) 

Description Thickness 

(m) 

Bottom Top Width x Length 

(# cells x # cells) 

From Amon et al. 

(2007) 

Open water 

on surface 

0.10 1.60 1.70 36 x 72  

Soil/water 

interface 

0.08 1.52 1.60 36 x 72  

Hydric soil 

layer 1 

0.19 1.33 1.52 36 x 72 0.38 m hydric soil 

(layer A) 

Hydric soil 

layer 2 

0.19 1.14 1.33 34 x 70 

Hydric soil 

layer 3 

0.19 0.95 1.14 34 x 70 0.38 m hydric soil 

(layer B) 

Hydric soil 

layer 4 

0.19 0.76 0.95 34 x 70 

Hydric soil 

layer 5 

0.19 0.57 0.76 32 x 68 0.38 m hydric soil 

(layer C, 10% 

wood chips) Hydric soil 

layer 6 

0.19 0.38 0.57 32 x 68 

Gravel layer 0.23 0.15 0.38 30 x 66 0.23 m limestone 

gravel 

(4cm diameter) 

Datum 0.00 0.00 0.15 n/a 0.15 m sand 
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This gives a total of 153 injection wells; and a total flow into the wetland of 0.192 m
3
 d

-1
 

x 153 = 29.3 m
3
 d

-1
, or 5.38 gpm.  This total modeled flow closely matches the measured 

value of 5.5 gpm (Corbin, 2008), but is well short of the maximum inflow rate of 54.7 m
3
 

d
-1

 (10.0 gpm) that the pump is capable of supplying to the wetland cell (Amon et al., 

2007).   

 Corbin (2008) used a value of 0.5 for soil porosity for all soil layers, citing Amon 

et al. (2007).  Amon et al. (2007) states that, based on research conducted by others on 

Figure 10:  Influent Piping Modeled as 153 Injection Wells in 3 Rows 

 
Source:  Corbin (2008) 
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the type of soil used in the treatment wetland, the soils “might release 50% of their 

volume as water.”  Entingh (2002) also estimated porosity at 0.53 (Entingh, 2002). 

 Hydraulic conductivity in the horizontal direction was assumed to be isotropic 

(Corbin, 2008).  Corbin (2008) assumed that since the same type of soil was used in each 

wetland cell layer, that there would be no horizontal anisotropy.  Furthermore, the 

equations used to calculate hydraulic conductivity (Hvorslev, 1951) assume homogeneity 

and isotropy. 

 The field measurements to determine hydraulic conductivity were done in a 

similar manner to prior work, but with a lower pressure flush of the well.  This was done 

in an attempt to avoid the problems of Entingh (2002) who found that hydraulic 

conductivity changed by 1 or 2 orders of magnitude after the wells were developed.  

Corbin (2008) found that with the lower pressure development, hydraulic conductivity in 

two wells increased by an order of magnitude, while in another well it decreased by an 

order of magnitude, allowing her to conclude that developing the wells produced more 

accurate values for hydraulic conductivity (Corbin, 2008). 

 Values for horizontal conductivity were derived from slug test results using the 

Hvorslev (1951) method and then imported into the model (Corbin, 2008).  Values for 

vertical conductivity (Kv) were not directly measured, but were assumed related to 

horizontal conductivity (Kh) by the ratio Kh / Kv = 1.5 for all soil layers (1.0 was used for 

the top open water layer).  Corbin (2008) found that the model was not sensitive to the Kh 

/ Kv ratio, as the model returned equivalent outputs for ratio values from 1.0 to 3.0. 

 Model calibration was conducted by varying the boundary head values while 

holding other parameters constant until the sum of the residuals between calculated and 
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actual head values was minimized (Corbin, 2008).  Corbin (2008) used boundary head 

settings of 1.7 m at the surface of the water and 2.9 m at the bottom of the model, 

resulting in a sum of squared weighted residuals (SSWR) of 20.5 m
2
.  She also found that 

a SSWR of 12.0 m
2 

could be achieved, but the model was then producing unrealistic 

velocities and water discharge. 

 Corbin (2008) found that the uVFTW was generally producing upward flow, with 

piezometers in the bottom layer generally having the highest head readings and 

piezometers in the top layers having the lowest head values (Corbin, 2008).  However, 

the range of head values within each layer was significant, and there was no pattern to the 

distribution of head values within each layer.  Comparing these data to the Entingh 

(2002) study, she concluded that the overall variations in head measurements had not 

changed significantly in the five years between the two studies (Corbin, 2008). 

 Flow characteristics were similar to those found by Entingh (2002).  The water 

moved horizontally in the gravel layer to the region of highest hydraulic conductivity, 

then vertically to the surface (Corbin, 2008).  In contrast to Entingh, who found that most 

of the water short-circuited vertically at the north side of the cell, Corbin found that the 

water was moving to the south side of the cell, then vertically to the surface (Figure 11).  

She attributed this to a change in the actual behavior of the wetland, as opposed to an 

error by either herself or Entingh (Corbin, 2008). 
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 MODPATH calculations were done to determine RTDFs.  Corbin found that the 

water spent an average of 0.47 days travelling through the bottom layer, 0.48 days in the 

middle layer, and 0.43 days in the top layer, for a total of 1.38 days (Corbin, 2008).  For 

areas of the wetland where flow was essentially stagnant, particles of water took 

>400,000 days to travel from the bottom to the top.  Considering the theoretical residence 

time (tbar) of 8.75 days, water appeared to be flowing through less than half of the volume 

of the cell (Corbin, 2008).  Table 8 summarizes RTDF findings of Entingh (2002), 

Blalock (2003), and Corbin (2008). 

 

 

Figure 11:  MODPATH Water Path-Lines from Bottom Layer (Red 

Dots) to Top Layer (Black Dots) 

 
Source:  Corbin (2008) 
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Table 8:  Summary of Hydraulic Residence Time Calculations 

 Mean hydraulic 

residence time 

(τ) 

Theoretical hydraulic 

residence time 

(tbar) 

Entingh (2002) Three days Not calculated 

Blalock (2003) 1.25 days 2.16 days 

Corbin (2008) 1.38 days 8.75 days 

 

 

 To determine the theoretical hydraulic residence time, tbar, Blalock (2003) and 

Corbin (2008) used the same equation: 

 

      
  

 
 (9)  

 

 

Blalock (2003) reasoned that since 2/3 of the inflow was assumed to be leaking out the 

bottom of the wetland and only 1/3 was actually transiting the wetland, V should also be 

reduced by 2/3.  Using a porosity (n) of 0.27, volume (V) of 651 m
3
 x 1/3 = 217 m

3
, and 

flow (Q) of 81.8 m
3
 d

-1
 x 1/3 = 27.3 m

3
 d

-1
, he arrived at tbar = 2.16 days (Blalock, 2003).  

Corbin (2008) used porosity of 0.5, volume of 523 m
3
, and flow of 30.0 m

3
 d

-1
 and 

arrived at tbar = 8.75 days.  Clearly, the reasoning of Blalock (2003) is flawed and the 

calculation of Corbin (2008) is more accurate. 

 Although there is significant variation in hydraulic residence time calculations 

between the three studies, all three came to the conclusion that hydraulic short-circuiting 

is a problem for the uVFTW at WPAFB.  In chapter 3, a baseline model will be 

constructed similar to Corbin (2008).  Various proposed engineering solutions to the 

problem of hydraulic short-circuiting will be incorporated into the model to determine 
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their effectiveness at improving performance.  The ability to evaluate ways of improving 

the performance of complex systems such as uVFTWs highlights the usefulness of the 

modeling approach. 
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III. Methodology 

 

3.1 Overview 

 The purpose of this chapter is to explain the steps used to evaluate the relationship 

between uVFTW cell characteristics (hydraulics, layer depths, degradation rates, etc.) and 

the resulting treatment efficiency of the cell.  The first step was to develop a model that 

simulates uVFTW operation.  Model development began by recreating the flow model of 

Corbin (2008) using the MODFLOW and MODPATH modules of the Groundwater 

Modeling System (GMS).  The flow model was then coupled with a transport code that 

simulates first-order chlorinated hydrocarbon degradation using first-order degradation 

rate constants from the literature.  After development of the model, the model was used to 

quantify the sensitivity of simulated treatment efficiency to varying design and 

environmental parameter values.  Finally, model simulations were run to determine the 

effectiveness of proposed engineering improvements at improving treatment efficiency. 

 

3.2 Model Development 

 Groundwater Modeling Software (GMS) version 7.1.9 was the software package 

used for this research effort.  It is the current version of the same software used in Corbin 

(2008).  GMS is a user-friendly interface to MODFLOW-2005, a commonly used 

program used to model groundwater flow in three dimensions.  MODFLOW is based 

upon a finite-differences solution to the following equation for groundwater flow 

(Harbaugh, 2005): 
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 (17) 

 

where, 

 K Hydraulic conductivity along the x, y, and z axes [L T
-1

] 

 h Potentiometric head [L] 

 W Source (W>0) or sink (W<0), volume water per unit volume per 

time [T
-1

] 

    Specific storage of the media [L
-1

] 

 t time [T] 

 

 

 Since it is generally not possible to solve the equation for flow analytically, 

MODFLOW uses a finite-differences method which is based upon a finite set of discrete 

points and changes in head values between these points (Harbaugh, 2005).  These points 

represent the center of cells, and the model space is thus represented as a matrix of cells.  

The equation for groundwater flow, expressed in finite difference form, is the balance of 

flows into and out of the cell set equal to the change in storage of the cell: 

       
  

  
   (18) 

where, 

 Qi Flow rate into the cell [L
3
 T

-1
] 

 SS Specific storage [L
-1

] 

    Volume of the cell [L
3
] 

    Change in head over time    
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MODFLOW simulates steady state conditions by setting SS=0.  The equation for flow 

then becomes: 

       (19) 

 

which simply states that the sum of flows into and out of any cell must equal zero 

(Harbaugh, 2005).  Solving a set of these algebraic equations for all cells in the matrix 

yields a numerical solution to the equation of flow.  Using the finite differences method, 

flow into and out of cells is calculated according to Darcy’s law: 

                              

                  

       
 (20) 

where, 

        head at node (center of cell) i,j,k [L] 

            flow rate through the face between cells i,j,k and i,j-1,k [L
3
 T

-1
] 

             hydraulic conductivity along the row between nodes i,j,k and i,j-

1,k [LT
-1

] 

        area of the cell faces normal to the direction of flow [L
2
] 

         distance between nodes i,j,k and i,j-1,k [L] 

 

 

The formulation of the subscripts allows similar expressions to characterize the flow 

through all six faces of each cell. 

 The design of the uVFTW at WPAFB lends itself to the grid approach to model 

design in MODFLOW.  The model was designed as a grid of 36 cells by 72 cells, each 
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0.5m square, for a total grid dimension of 18m x 36m.  The 1.7m depth of the wetland 

was structured as 10 layers, with properties outlined in Table 9. 

 

 

 

 

 

 Layer Property Flow was used as the flow package, while the solver used was the 

Preconditioned Conjugate Gradient Method (PCG2).  PCG2 was selected in favor of 

Strongly Implicit Procedure (SIP1) due to its superiority at handling dry cells (Harbaugh, 

2005).  For simplicity, precipitation and evapotranspiration were turned off.   

Table 9:  Grid Construction, Current Research 
Description Thickness 

(m) 

Bottom Top Width x Length Kh 

m d
-1

 

Kh/ 

Kv 

Porosity 

Layer 1, 

Const Hd boundary 

0.10 

(surface at 

cell center) 

1.60 1.80 cells: 36 x 72 

meters: 18 x 36 

Interpo

lated 

1.0 0.3 

Layer 2, 

Hydric soil 

0.20 1.40 1.60 cells: 36 x 72 

meters: 18 x 36 

Interpo

lated 

1.0 0.3 

Layer 3, 

Hydric soil 

0.20 1.20 1.40 cells: 34 x 70 

meters: 17 x 35 

Interpo

lated 

1.0 0.3 

Layer 4, 

Hydric soil 

0.20 1.00 1.20 cells: 34 x 70 

meters: 17 x 35 

Interpo

lated 

1.0 0.3 

Layer 5, 

Hydric soil / gravel 

0.12 0.90 1.00 cells: 32 x 68 

meters: 16 x 34 

Interp 

250 

1.0 0.3 

Layer 6, 

Hydric soil 

0.20 .70 .90 cells: 32 x 68 

meters: 16 x 34 

Interpo

lated 

1.0 0.3 

Layer 7, 

Hydric soil 

0.20 .50 .70 cells: 30 x 66 

meters: 15 x 33 

Interpo

lated 

1.0 0.3 

Layer 8, 

Hydric soil 

0.18 .30 .50 cells: 30 x 66 

meters: 15 x 33 

Interpo

lated 

1.0 0.3 

Layer 9, 

Gravel/soil mix 

0.10 .20 .30 cells: 28 x 64 

meters: 14 x 32 

25 1.0 0.3 

Layer 10, 

Gravel, influent 

0.20 0.00 0.20 cells: 28 x 64 

meters: 14 x 32 

250 

2.5e08 

Kv= 

250.0 

0.3 

Datum 0.00 0.00 0.00 n/a    
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 The constant head boundary in layer 1 was used to simulate the effluent weir 

removing water from the wetland.  Head was set to 1.75m in layer 1, which is 0.05m 

above the center of the cell and represents that depth of standing water on the surface.  

Water entering layer 1 from below would have the effect of increasing head in the layer.  

MODFLOW simply removes this amount of water from the wetland model entirely in 

order to maintain head at the specified level.    The drawback to this method is there is no 

central point from which to measure effluent contaminant concentration.  Effluent 

concentration will be estimated in this research effort by averaging concentration data 

from the layer 1 cells. 

 Two other methods of removing water from the wetland were considered and 

rejected.  The first was to model the effluent weir as an extraction well in layer 1.  This 

was rejected due to the artificial effect an extraction well would have on flow.  The 

second was to model the effluent weir as a drain cell.  Water would flow out of the 

wetland if head was above a specified level, but no flow would occur if head was below 

the specified level.  Although this is conceptually a better way to model the effluent weir, 

in practice the drain cell proved incapable of removing a sufficient quantity of water.  

Since the drain cell was located in layer 1, which was also the constant head boundary, 

the constant head boundary always removed more water than the drain cells. 

 Rather than model the influent piping using 153 injection wells arranged in three 

rows as was done in Corbin (2008), the influent pipes were modeled as 3 rows of highly 

permeable cells connected to one cell designated as an injection well (WEL1 package).  

The injection well was set to 29.3 m
3
 d

-1
 to reflect the total inflow (Figure 12).  
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Horizontal hydraulic conductivity in the influent rows was set to 2.5e08 m d
-1

, which is 

six orders of magnitude higher than the surrounding gravel cells (250 m d
-1

).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 The purpose for this change to Corbin’s (2008) approach was to more accurately 

model the effect of heterogenous permeability on what is, in effect, a multi-nodal 

injection well.  If, for example, one of the three rows of influent piping was in highly 

permeable soil, then more of the total flow should flow into that row, and the other two 

rows would carry substantially less flow.  Modeling the influent as separate injection 

wells does not allow this phenomenon to be simulated. 

 Another way to model the influent piping would be to use the Multi-Nodal Well 

package (MNW).  This package is designed to simulate wells that are screened in more 

Figure 12:  Influent Piping Modeled as 3 rows of Highly Permeable Cells 

Connected to One Injection Well 
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than one level.  Unfortunately, the current package supported by GMS (MNW-1) does 

not simulate horizontal wells appropriately, and the new package (MNW-2) is not yet 

supported by GMS (Halford and Hanson, 2002). 

 The field measurements of head from Corbin (2008) were imported as an 

Observation Data Set.  MODFLOW reported the difference between the calculated head 

values and the observed head values, within a user-specified standard deviation and 

confidence interval.  This difference between calculated and actual head values, the sum 

of squared weighted residuals (SSWR), is the objective function MODFLOW uses to 

measure how close the calculated values are to the measured values.  The lower the 

SSWR, the closer the calculated values are to the measured values.   

 Corbin (2008) estimated values of hydraulic conductivity from 16 measurements 

that were based on field slug tests and then calculated using the Hvorslev (1951) method 

(Table 10).   
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Table 10:  Estimated Hydraulic Conductivity Values from Corbin (2008) 

Label X [m] Y [m] Z [m] Kh [m d
-1

] 

1 5.2 2.8 1.54 .03915 

2 4.7 3.2 1.16 .08123 

3 4.7 2.8 0.78 51.1997 

4 8.3 12.6 1.54 .0494 

5 7.9 13.0 1.16 .02025 

6 7.9 12.6 0.78 3.15456 

7 17.9 10.3 1.53 .01962 

8 17.4 10.7 1.16 .43693 

9 17.4 10.3 0.78 8.19638 

10 21.1 7.6 1.54 .07378 

11 20.7 8.0 1.16 .82333 

12 27.6 4.8 1.54 .46289 

13 27.0 5.8 1.16 .05619 

14 27.0 4.8 0.78 51.1997 

15 30.2 13.0 1.16 .03187 

16 30.2 12.6 0.78 11.1293 

 

 

 For comparison, Table 11 summarizes typical ranges of hydraulic conductivity for 

different soil types. 

 

 

Table 11:  Typical Values of Hydraulic Conductivity 

Soil type Kh [m d
-1

], lowest Kh [m d
-1

], highest Source 

Silt 0.0001 1.7 (Domenico and 

Schwartz, 1990) Clay 0.000001 0.0004 

Sand, fine 0.017 17.3 

Gravel 25.9 2592.0 

Soil 0.004 0.43 (Pardue, 2005) 

 

 

 Considering that the field measurements of Corbin (2008) are all made in the soil 

layers, it can be seen that the values at the elevation z = 0.78m are much higher than 
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would be expected.  When these 16 values are interpolated throughout every cell of the 

3D grid, the effect of the large values is magnified, depending on the interpolation 

technique used (Appendix B). 

 Interpolation is a technique whereby calculated values are assigned to all cells 

based upon measured values of specific cells.  Three of the more commonly used 

techniques are Shepard’s Method, Gradient Plane Nodal Functions, and Kriging.  All use 

the inverse distance weighting method, which is based on the assumption that cells 

closest to a measured value should be influenced more by that value than cells farther 

away (Aquaveo, 2010).  They differ in that Shepard’s Method constrains the interpolated 

data set to lie between the minimum and maximum of the measured values, while 

Gradient Plane Nodal technique produces values that include minima and maxima 

implied by the measured data.  Gradient Plane Nodal should be a better technique than 

Shepard’s Method, unless the measured data include significant outliers.  These outliers 

result in minima and maxima that diverge even farther from actual values.  Also, 

Gradient Plane Nodal will produce negative values, necessitating truncation of the data at 

a minimum level.  Kriging differs from Shepard’s Method and Gradient Plane Nodal in 

that the weights used in inverse distance weighting are a function of the measured values.  

The variances of the measured values are plotted against distance between the points in 

what is known as an experimental variogram.  The model variogram is a best-fit trend 

line to the experimental variogram.  The equation of the model variogram is used to 

compute the interpolation weights.  Because the interpolation weights are mathematically 

determined by the spatial relationship of the variance of the measured data, Kriging is 
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considered a more accurate method of interpolation (Aquaveo, 2010).  Kriging was the 

only interpolation method used in this research. 

 Table 12 illustrates the differences in interpolated hydraulic conductivity data 

produce by the three techniques. 

 

 

Table 12:  Hydraulic Conductivity Estimates Produced by Three Interpolation 

Techniques 

[m d
-1

] Shepard Gradient Kriging 

Range 

(truncated) 

0.17 to 49.80 

n/a 

-167.5 to 237.9 

0.0001 to 237.9 

-5.66 to 47.0 

0.0001 to 47.0 

Mean 

(truncated) 

7.32 

n/a 

10.03 

22.88 

6.32 

6.35 

Median 

(truncated) 

5.66 

n/a 

1.39 

1.39 

4.83 

4.83 

Std Dev 

(truncated) 

5.57 

n/a 

50.06 

38.10 

6.37 

6.34 

 

 

 A problem arose during model construction that necessitated significantly 

modifying the field data used by Corbin (2008).  It was found that the observed head data 

set and the calculated hydraulic conductivity data set could not both be correct within the 

context of the uVFTW at WPAFB.  Consider Darcy’s Law: 

        (3) 

where, 

 Q Volumetric flow rate [L
3
 T

-1
] 

 K Hydraulic conductivity [L T
-1

] 

 A Cross-sectional area perpendicular to the direction of flow [L
2
] 

    Head gradient [ - ] 
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 For the uVFTW at WPAFB, both Q and A are constant.  Therefore, if hydraulic 

conductivity is very large, the head gradient has to be very small.  Using values of 

hydraulic conductivity interpolated from the measured values of Corbin (2008), which 

the reader will recall were calculated based on slug tests and the Hvorslev (1951) method, 

and the known values of Q and A, it was possible to estimate a head gradient.  The 

estimated head gradient was 0.006 [m m
-1

], (1.76m at the bottom and 1.75m at the top of 

the wetland cell) which was much lower than the measured gradient.  Since the head and 

hydraulic conductivity data were incompatible, and the head data were judged to be more 

accurate, the observed head data were retained and the hydraulic conductivity data were 

forced to match by simply dividing the measured values for conductivity by an 

appropriate constant before interpolating.  This was done by trial and error until the 

summed squared weighted residuals (SSWR) between computed heads and observed 

heads was minimized.  It was found that when the hydraulic conductivity values in layers 

2 and 4 were divided by 15, and the hydraulic conductivity values in layer 6 were divided 

by 45, the SSWR was minimized.  Dividing the hydraulic conductivity values by one 

constant did not produce a realistic head gradient and a single constant chosen to match 

the calculated and observed head values in the top two layers resulted in a large error in 

the bottom layer, and vice versa.  This necessitated the use of a second constant for the 

bottom layer values of hydraulic conductivity.  Table 13 summarizes the profile of 

interpolated hydraulic conductivity for the soil layers: 
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Table 13:  Interpolated Hydraulic Conductivity Data 

Range 0.0001 – 1.046 m d
-1

 

Mean 0.147 m d
-1

 

Median 0.114 m d
-1

 

Standard Deviation 0.140 m d
-1

 

 

 

This had the desired effect of producing a realistic head gradient between the lower level 

and the upper level while also retaining the hydraulic conductivity heterogeneity.   

 The interpolated hydraulic conductivity data set was then populated using the 

Layer Property Flow (LPF) module within MODFLOW.  This had the effect of 

eliminating the gravel layer (Layer 10), as the original scatter data set did not include 

gravel layer measurements.  To simulate a gravel layer, a value of 250.0 m d
-1

 for 

horizontal hydraulic conductivity was imposed on layer 10 after populating the LPF 

module with the interpolated data set.  Vertical conductivity was estimated by setting the 

ratio Kh/Kv = 1.0 for all layers except layer 10.  For layer 10, setting Kh/Kv = 1.0 would 

have resulted in overly high values for Kv for the highly permeable cells.  For the gravel 

scenario, Kv was set directly (not as a ratio) at 250 m d
-1

.  For scenarios with no gravel 

layer, Kh/Kv was set to 1.0 for the entire layer 10 except the highly permeable influent 

cells.  These were set to Kh/Kv = 500,000,000 so that Kv = 0.5 m d
-1

, which produced 

Kh/Kv ≈ 1.0. 

 Once the flow model was developed, contaminant transport was added to account 

for degradation.   Contaminant transport was incorporated using RT3D, which is a 
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submodule included within MT3DMS, which is itself a module of GMS.  RT3D is a 

multi-species reactive transport model that is designed to simulate natural attenuation and 

bioremediation (Clement, 1997).  RT3D incorporates seven different pre-programmed 

reaction modules, to simulate the more common contaminants and environmental 

conditions.  The reaction module that will be used in this research effort is the 

aerobic/anaerobic model for PCE/TCE degradation (Clement, 1997).  This module 

assumes first-order decay for all contaminants, and assumes that all decay happens in the 

aqueous phase (Clement, 1997).  The user must specify first-order anaerobic degradation 

rate constants for PCE, TCE, DCE, VC, and ethene; as well as first-order aerobic 

degradation rate constants for TCE, DCE, VC, and ethene.  The reaction kinetic 

equations for aerobic/anaerobic degradation, separated from the transport equations, are 

summarized as follows (Clement, 1997): 

 

       

  
    

       

  
 

(21) 

 

       

  
  

                               

  
 

(22) 
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(26) 

 

 

where, 

 [A] Concentration of species A [mg L
-1

] 

 K1 1
st
 order anaerobic degradation rate constant for species A [T

-1
] 

 K2 1
st
 order aerobic degradation rate constant for species A [T

-1
] 

 YB/A Stoichiometric yield coefficient for the anaerobic reductive 

dechlorination of A to B, defined as the molecular weight of B 

divided by the molecular weight of A [-] 

 Y1, Y2 Stoichiometric yield coefficient for the anaerobic (1) or aerobic (2) 

production of chloride, defined as the molecular weight of chloride 

divided by the molecular weight of the species which produces it [-] 

 RA Retardation coefficient for compound A [-] 

 

 

The user can accept the default K1 and K2 values for all layers, in which case both 

anaerobic and aerobic degradation would occur in all layers.  Alternatively, the user can 

specify different K1 and K2 values for each layer.  For anaerobic layers, K2 would be set 

to zero, while for aerobic layers, K1 would be set to zero.  It can thus be seen from 

equations (21) to (26) that anaerobic decay is sequential, producing ethane and chloride 

as final end-products.  Aerobic decay produces chloride directly without intermediate 

products. 

 In Chapter 2 it was demonstrated that Monod kinetics may be approximated as 

first-order as long as the concentration of the chlorinated ethene substrate in the influent 
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is at least two orders of magnitude less than the values for Ks. Suarez and Rifai (1999) 

report the following values for Ks: 

  PCE:  12.00 mg/L 

  TCE:  19.00 mg/L 

  DCE:  28.00 mg/L 

  VC:  23.00 mg/L 

 

 Waldron (2007) reported an average influent concentration for PCE (S in equation 

12) of 46.5 µg/L.  Since this is less than the reported values of Ks by approximately three 

orders of magnitude, 1
st
 order degradation is a reasonable approximation.  This 

approximation also assumes that biomass density (B in equation 12) is a constant.  In 

other words, the microbial biomass population must be at steady state.  Given that the 

WPAFB VFTW has been in operation for nine years, this seems reasonable. 

 In order to keep the model run times within reason, sorption was assumed not to 

occur, so R=1.0 in the above equations.  Influent concentration was set to 1.0 mg L
-1

 for 

PCE, and 0.0 mg L
-1

 for all other species.  Model run times were also limited to 30 days to 

prevent excessive run times.  First order anaerobic degradation rate constants were 0.4 d
-1

 

for PCE, 0.014 d
-1

 for TCE, 0.004 d
-1

 for DCE, 0.004 d
-1

 for VC, and , 3.08 d
-1

 for ethene.  

First order aerobic degradation rate constants were 0.0 d
-1

 for PCE, 0.78 d
-1

 for TCE, 0.90 

d
-1

 for DCE, 1.85 d
-1

 for VC, and 0.001 d
-1

 for ethene.  All were taken from literature 

reported values (Powell, 2010 and Suarez and Rifai, 1999).  It was assumed that no 

anaerobic degradation occurred in the top two layers which were assumed to be well 

oxygenated.  It was also assumed that aerobic degradation occurred only in the top two 

layers.  Treatment efficiency was measured by percent reduction in total VOCs from the 

influent, where concentration was comprised solely of 0.006 mmol L
-1

 of PCE (1.0 mg L
-1

); 
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to layer 1, where the average molar concentration across the entire layer of PCE, TCE, 

DCE, and VC constituted a proxy for effluent concentration.   

 

3.3 Sensitivity Analysis 

 Sensitivity analyses were conducted to see how varying design parameters and 

environmental parameters affect treatment efficiency.  Specifically, baseline values for 

anisotropy, layer thickness, hydraulic conductivity, and degradation rate constants were 

varied to determine which parameters have the most effect on overall treatment 

efficiency.  Because of the significant model run times for RT3D, sensitivity analyses 

were conducted using MODPATH residence times as a proxy for treatment efficiency. 

The exception to this was sensitivity analyses for degradation rates, which could not be 

run other than with RT3D. 

 The baseline value for vertical anisotropy was Kh/Kv = 1.0; and values of 1.5, 2.0, 

2.5, and 3.0 were run. 

 Layer thickness.  The original design called for 114 cm of hydric soil based on the 

observation cited by Amon et al. (2007) that the root zone of local fens extends 

down to at least 100 cm.  It has since been observed that the root zone in the 

treatment wetland extends into the bottom layer (personal communication with 

Dr. Shelley).  This may be oxygenating the entire depth of the wetland cell, 

reducing the anaerobic volume of the bottom layer.  Increasing the depth of the 

treatment wetland may increase the effectiveness of anaerobic processes.  

Sensitivity analyses were run with wetland depths of 2.0 m and 3.0 m to test this. 
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 Hydraulic conductivity was varied by running every combination of Kh = 0.2 m d
-1

 

in layers 1-8, Kh = 2.0 m d
-1

 in layers 1-8, Kh = 25.0 m d
-1

 in layer 10, Kh = 250.0 

m d
-1

 in layer 10, and Kh = 1000.0 m d
-1

 in layer 10.  Layer 9 was held constant at 

Kh = 25.0 m d
-1

. 

 For degradation rates, sensitivity analyses were run using mean values and upper-

range values.  Minimum values were not used, because these are typically zero 

(Suarez and Rifai, 1999).  Table 14 summarizes values of degradation rate 

constants that were used. 

 

 

 

Table 14:  First Order Degradation Rate Constants Used in Sensitivity Analyses 

Parameter Variable Mean [d
-1

] Maximum [d
-1

] 

PCE, anaerobic Kp 0.01 0.80 

TCE, anaerobic KT1 0.004 0.023 

TCE, aerobic KT2 0.15 1.41 

cDCE, anaerobic KD1 0.003 0.006 

cDCE, aerobic KD2 0.59 1.15 

VC, anaerobic KV1 0.001 0.007 

VC, aerobic KV2 1.73 1.96 

 

3.4 Model Application 

 The model was then applied to estimate the effectiveness of various engineering 

solutions at improving overall treatment efficiency. 

 Omission of the gravel layer.  Corbin (2008) showed most of the water moving 

laterally in the gravel layer to one area, then up from there (Figure 11).  Omission 

of the gravel layer allowed a test of the hypothesis that lateral hydraulic 
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conductivity would be reduced and flow would be biased upward from the point 

of injection. 

 Configuration of influent piping.  With the gravel layer omitted, it may be 

necessary to inject the water via more than 3 PVC pipes in order to equally 

disperse the influent across the length and width of the cell bottom.  Spacing the 

pipes 1m apart would allow 13 rows of influent piping to be placed in the bottom 

layer.  Model runs will determine the impact of this design change. 

 Mid-layer piping.  A lattice network of 3” perforated PVC piping installed 

midway between the bottom and the top of the cell may “capture” high hydraulic 

head in one area and re-distribute it laterally throughout the cell.  The upward 

flow may be more evenly distributed from that point.  Alternatively, it may 

exacerbate hydraulic short circuiting by providing a high permeability route to the 

area of high hydraulic conductivity. 

 Division of influent piping network into zones, each one linked to a surface-level 

shutoff valve.  Individual zones could be shut off if it became apparent that 

hydraulic short-circuiting was occurring in a particular area of the treatment 

wetland. 
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IV. Results and Discussion 

 

4.1 Overview 

 Figure 13 shows the hydraulic conductivity contours in Layer 10 obtained by 

kriging the 16 modified measured values of conductivity.  The figure clearly shows two 

zones of high conductivity in layer 10.  In cross-sectional view A-A, these zones will 

appear on the left side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Using these values for hydraulic conductivity, MODFLOW calculated heads that 

ranged from 1.75m at the surface (the constant head boundary) and 2.40 m at depth, and 

matched the observed head values with a SSWR of 221 m
2
.  An additional check on the 

Figure 13:  Overhead View of Interpolated Hydraulic Conductivity Values,Layer 10 
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accuracy of the model was to ensure that the flow budget was accurate.  Specifically, the 

percentage difference between inflows and outflows should be less than 1%.  Also, total 

inflow should equal both the specified flow introduced at the injection well and the 

calculated outflow at the constant head boundary (Table 15).   

 

 

 

Table 15:  Baseline Model Flow Budget 

 In flows [m
3
 d

-1
] Out flows [m

3
 d

-1
] 

Constant Heads 0.0 29.3 

Wells 29.3 0.0 

Totals: 29.3 29.3 

Percent Difference: 0.001% 

 

 

 The SSWR of 221 m
2
 is significantly greater than the 20.5 m

2
 achieved by Corbin 

(2008), but this is attributable to a statistical discrepancy between the two research 

efforts.  The data set containing the observed head values requires the user to specify 

either the standard deviation of the values and the confidence level, or the user must 

directly specify the confidence interval.  The computer then uses this information to 

decide how close the calculated values are to the observed values.  It was discovered 

during model calibration that the standard deviation used in Corbin (2008) was almost 

twice the actual standard deviation as calculated directly from the observed head values 

(0.51 vs. 0.29).  Furthermore, closer inspection of the data revealed two distributions 

(Figure 14).  The lower distribution consisted of 29 of the 44 measurements, had a mean 

of 1.82 m, a standard deviation of 0.09 m, and looked roughly normal.  The higher 
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distribution contained the remaining 15 measurements, had a mean of 2.41 m, a standard 

deviation of 0.05 m, and appeared skewed left.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For this research effort, the observed head values for the approximately normally 

distributed data set were assigned the standard deviation of those data.  GMS then 

calculated an interval of 2xSD, producing a 95% confidence interval.  For the second data 

set, the broader criteria of Chebyshev’s theorem were applied.  For non-normally 

distributed data, Chebyshev’s theorem states that, for k>1, at least (1 - 1/k
2
) of the values 

will fall within k standard deviations away from the mean (McClave et al., 2008).  For 

Figure 14:  Histogram of 44 Observed Head Measurements 

 

Source:  Corbin (2008) 
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example, 94% of the values will lie within 4 standard deviations from the mean (1 - 1/16 

= 0.94).  For the non-normally distributed data, a standard deviation of 0.10 was 

artificially imposed upon the values in order to produce an interval of 0.20, which is 

equivalent to 4 standard deviations. 

 GMS was able to match the n=29 set of observations (which were higher in 

elevation) within a 95% confidence interval.  However, the lower elevation observations 

could not be matched unless the interval for these observations was directly specified at 

0.5, approximately 10 times the standard deviation of the data.   

 Use of RT3D to evaluate contaminant degradation was severely limited by the 

computational time required for each model run.  Minimum run times for 30 model-days 

were 12-14 hours, with some runs aborted when it became clear that they would take over 

600 hours.  Despite these limitations, useful mass and concentration data for models that 

simulated degradation were acquired.  By inspection of Figure 15, it is clear that the 

model is at steady state, which allows a comparison of percent reduction in total VOCs 

versus mean hydraulic residence time.  Comparing percent reduction in total VOCs for 

models of proposed design changes with the baseline model allowed an evaluation of the 

potential benefit of the proposed design change.   
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4.2 Sensitivity Analysis 

 

 Initial RT3D runs were conducted with mean values for all degradation rate 

constants (Table 14).  It was determined, based on high concentrations of total VOCs in 

layer 1 and the lack of correlation between percent removal and mean hydraulic residence 

time, that mean values were too low for the range of mean hydraulic residence times in 

the models.  Consequently, all RT3D models were re-run using degradation rate constants 

that were an arithmetic average of the mean and the maximum values (Table 14).   

 Sensitivity analysis was conducted by varying parameters as outlined in chapter 3, 

and then comparing how either mean hydraulic residence time or contaminant mass 

Figure 15:  PCE Concentration Baseline Model 
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destroyed was affected.  Specifically, the percent change in the output parameter (the 

hydraulic residence time or mass destroyed) was divided by the percent change in the 

input parameter.  The absolute value of the resultant number indicates insensitivity if 

close to zero, and sensitivity if greater than 1 (Table 16).  

 

 

Table 16:  Sensitivity Analyses Results 

Input parameter % change in mean HRT / 

% change in input parameter 

Anisotropy 0.004 to 0.062 

Layer thickness 0.978 to 1.094 

Hydraulic conductivity 0.029 to 0.033 

PCE rate constant 0.148 

TCE rate constant 0.413 

DCE rate constant 0.006 

VC rate constant 1.379 

 

 

 The model is insensitive to changes in anisotropy and hydraulic conductivity, but 

sensitive to changes in layer thickness.  The model is insensitive to degradation rate 

constants, with the exception of the rate constant for VC. 

 

4.3 Model Outcomes of Proposed Design Changes 

 The baseline model, while based upon the uVFTW at WPAFB, is not intended to 

quantitatively simulate its hydraulic behavior or performance as a treatment reactor.  A 

key aspect of this study is to demonstrate how modeling may be applied to investigate the 

potential impact of design changes on performance.    
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 Of the seven different models that were evaluated, the baseline was the worst in 

terms of hydraulic performance.  At 6.19 days, the mean hydraulic residence time was the 

lowest, which also produced the lowest cell volume utilization rate at 65.2% (Table 23).  

In a MODPATH release of approximately 1,000 particles, 88.9% of them had hydraulic 

residence times less than the nominal hydraulic residence time of 9.50 days (calculated 

based on flow of 29.3 m
3
 d

-1
, porosity of 0.30, and wetland volume of 928 m

3
).  The 

residence time distribution function (Figure 16) shows characteristic short-circuiting 

(RTDFs for the remaining models appear in Appendix A).  Degradation results for the 

Baseline Model are summarized in Table 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16:  RTDF for Baseline Model 

 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 3 5 7 9 11 13 15 17 19 21 23 25 27

C
u

m
u

la
ti

ve
 %

N
o

rm
 F

re
q

u
e

n
cy

 [
d

-1
]

Time [d]



 

73 

 

 

Table 17:  Baseline Model Degradation Results 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

 

 

These destruction efficiencies will serve as the basis for evaluating the effectiveness of 

subsequent models. 

 Omission of the gravel in layer 10 (No Gravel, 3 Pipes model) had a slight 

improvement on hydraulic performance.  The mean hydraulic residence time increased to 

6.89 days, while cell volume utilization increased to 72.5%.  Removing the gravel, but 

leaving in place the three influent pipes seems to have had the effect of “focusing” the 

head on three narrow bands of soil centered directly above each influent pipe, decreasing 

mean hydraulic residence time (Figure 17).  Omitting the gravel in layer 10 does seem to 

have reduced the impact of the zone of high hydraulic conductivity, which is centered 

above the left-hand influent pipe in Figure 17.  All three of the spike-shaped head profiles 

demonstrate a bias toward upward flow.  It should be noted that this model was tested 

only to evaluate the impact of changing this one design parameter, and was never 

recommended as a design improvement. 
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 Degradation data for the No Gravel, 3 Pipes model were improved over baseline.  

Layer 1 concentration was lower than the baseline concentrations for all species, and the 

reduction in total VOCs was improved from 81.7% to 89.6% (Table 18).   

  

Figure 17:  Head Profiles from No Gravel, 3 Pipes Model (Section View A-A:  

Looking Down Longitudinal Axis) 
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Table 18:  Degradation Data for the No Gravel, 3 Pipes Model 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

No Gravel 3 Pipes 

[mg L
-1

] 

0.044 0.044 0.002 0.94E-05 89.6% 

 

 

 The next model, No Gravel 12 Pipes, differs from the prior model in that 12 

influent pipes are used instead of 3.  The improvement in the hydraulic performance was 

dramatic, with mean hydraulic residence time increasing 50% to 9.40 days, just slightly 

below the nominal hydraulic residence time of 9.50 days.  Cell volume utilization 

increased to 99.0%.  Instead of the three spike-shaped head profiles seen in the No Gravel 

3 Pipes model, a much more evenly distributed head profile is demonstrated (Figure 18).  

The effects of the zone of high hydraulic conductivity can be seen slightly to the left of 

center in the figure.   
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 Despite the improvement in hydraulic residence time, the reduction in total VOCs 

was not significantly better than the No Gravel 3 Pipes model (compare Table 19). 

 

 

Table 19:  Degradation Data for the No Gravel, 12 Pipes Model 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

No Gravel 12 Pipes 

[mg L
-1

] 

0.028 0.052 0.003 1.32E-05 90.2% 

 

 

Figure 18:  Head Profiles from No Gravel, 12 Pipes Model (Section View A-A) 
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 The second proposed design change was to incorporate a layer of gravel or 

perforated PVC pipes midway between the top and bottom of the wetland.  Such a design 

would create a zone of very high horizontal hydraulic conductivity and would possibly 

serve to redistribute differences in head from areas of high head to low head.  In the 

Layer 5 Gravel model, horizontal hydraulic conductivity in layer 5 was set to 

250,000,000 m d
-1

, a value high enough to reflect a layer of perforated PVC pipes laid 

side-by-side in gravel.  Layer 10 was gravel, and three influent pipes were used. 

 The improvement in hydraulic performance was similar to the No Gravel 12 Pipes 

model.  Mean hydraulic residence time increased to 9.44 days and cell volume utilization 

increased to 99.4%.  Some of the improvement in hydraulic residence time was probably 

attributable to significant tailing in the RTDF, which appears heavy enough to pull the 

mean to the right.  This is supported by the observation that the percentage of 

MODPATH particles with hydraulic residence time less than the nominal hydraulic 

residence time was greater in the Layer 5 Gravel model compared to the No Gravel 12 

Pipes model, even though mean hydraulic residence time was greater in the Layer 5 

Gravel model. 

 Qualitatively, introducing gravel for Layer 5 did produce a significant change in 

the head profile (Figure 19).  It was anticipated that the Layer 5 Gravel could produce 

this change in head profile while also decreasing the hydraulic performance of the model, 

which appears to have happened for this model.  The inclusion of gravel in an actual 

wetland would have required different soil placement techniques than were used in the 

construction of the uVFTW at WPAFB.  This would probably have produced different 

distributions of hydraulic conductivity in the soil on top of the gravel layer compared to 
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the soil below the gravel layer, and would have produced different results than those 

predicted by the model, which assumed the hydraulic conductivity of all layers, except 

for Layer 5, was unchanged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Degradation data for the Layer 5 Gravel model are listed in Table 20.  

Degradation was better for all species except VC, and % reduction in total VOCs was 

comparable to the No Gravel 12 Pipes model.   

Figure 19:  Head Profile for Layer 5 Gravel 3 Pipes 
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Table 20:  Degradation Data for the Layer 5 Gravel Model 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

Layer 5 Gravel 3 Pipes 

[mg L
-1

] 

0.027 0.051 0.003 1.62E-05 90.2% 

 

 

 The next model, Layer 5 Gravel 12 Pipes, combined what seemed to work so well 

in the prior two models.  Layer 10 gravel was removed, 12 influent pipes were used 

instead of 3, and the Layer 5 high hydraulic conductivity zone was incorporated.  While 

the improvement in hydraulic performance was still significant, the model did not 

perform as well as either No Gravel 12 Pipes or Layer 5 Gravel.  Mean hydraulic 

residence time was 9.16 days, and cell volume utilization was 96.4%.  Notably, however, 

the percentage of MODPATH particles with hydraulic residence time less than the 

nominal hydraulic residence time was the second lowest of all the models, indicating that 

the relatively low mean hydraulic residence time is probably due to a few MODPATH 

particles with very low hydraulic residence times rather than an overall leftward shift in 

the RTDF.  This is supported qualitatively by the appearance of the RTDF  (Appendix 

A).  The effect of the layer 5 gravel is still observed in the head profile (Figure 20). 
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Figure 20:  Head Profile for Layer 5 Gravel 12 Pipes 

 

 

 

 Degradation data were better than the Baseline model and similar to the other two 

models examined so far.  The concentration of VC went down in this model, whereas it 

went up in the prior model (compare Table 21). 
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Table 21:  Degradation Data for the Layer 5 Gravel 12 Pipes Model 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

Layer 5 Gravel 12 Pipes 

[mg L
-1

] 

0.027 0.053 0.003 1.01E-05 90.0% 

 

 

 The final proposed design change was to incorporate shutoff valves within each 

row.  If zones of hydraulic short-circuiting were identified during system operation, the 

influent pipes under those zones could be shut off, redirecting the flow to the remaining 

open influent pipes.  The models that evaluate this proposed design change, 1 Pipe 

Shutoff and 4 Pipes Shutoff, were constructed so that an entire row (oriented along the 

longitudinal axis of the wetland), would have to be shut off.  However, it is easy to 

imagine any number of configurations, similar to in-ground sprinkler system designs, 

which would allow small regions of the wetland to be shut off. 

 Shutting off entire rows was a good test design given the nature of the hydraulic 

conductivity heterogeneity (Figure 13).  The hydraulic conductivity values showed two 

zones of high hydraulic conductivity – one centered above row 30, and the other centered 

above rows 24-30.  The 1 Pipe Shutoff model shut off the influent pipe in row 30, while 

the 4 Pipes Shutoff model shut off the influent pipes in rows 24-30. 

 1 Pipe Shutoff performed better than baseline, with a mean hydraulic residence 

time of 8.62 days and percent cell volume utilization of 90.7%.  4 Pipes Shutoff produced 

a mean hydraulic residence time of 17.45 days, and a cell volume utilization rate of 

183.7%.  This high value however, was attributable to significant tailing.  A few 
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MODPATH particles had residence times of 130-277 days.  This indicates that the high 

mean hydraulic residence time was due to stagnant or cycling flow.  Despite this, the 4 

Pipes Shutoff model was the best performer in terms of the percentage of MODPATH 

particles with hydraulic residence time greater than the nominal hydraulic residence time, 

at 36.7%. 

 Degradation performance of the two models was better than the Baseline model 

for all species and for % reduction in total VOCs.  However, the 4 Pipes Shutoff model 

performed slightly worse than all the other designs as measured by % reduction in total 

VOCs (Table 22). 

 

 

Table 22:  Degradation Data for the Pipes Shutoff Models 

 PCE TCE DCE VC % Reduction 

Total VOCs 

Baseline 

[mg L
-1

] 

0.067 0.086 0.004 1.42E-05 81.7% 

1 Pipe Shutoff 

[mg L
-1

] 

0.027 0.053 0.003 1.36E-05 90.1% 

4 Pipes Shutoff 

[mg L
-1

] 

0.033 0.058 0.003 1.02E-05 88.8% 

 

 

A summary of hydraulic performance and degradation performance data for all 

models is shown below (Table 23).   
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Table 23:  Summary of Hydraulic and Degradation Data for All Models 
 Base- 

line 

No 

Gravel, 

3 Pipes 

No 

Gravel, 

12 Pipes 

Layer 5 

Gravel, 

3 Pipes 

Layer 5 

Gravel, 

12 Pipes 

1 Pipe 

Shutoff, 

12 Pipes 

4 Pipes 

Shutoff, 

12 Pipes 

nominal hydraulic residence 

time [d] 

9.50 

tau 

[d] 

6.19 6.89 9.40 9.44 9.16 8.62 17.45 

variance 

[d
2
] 

34.6 41.6 56.5 103.6 35.2 30.0 514.1 

dimensionless 

variance [ - ] 

0.90 0.88 0.64 1.16 0.42 0.40 1.69 

% actual HRT < nominal 

HRT 

88.9% 83.3% 72.2% 77.8% 68.3% 75.3% 63.3% 

% volume utilization 

 

65.2% 72.5% 99.0% 99.4% 96.4% 90.7% 183.7% 

Average time layer 1-4 

[d] 

2.12 2.72 2.98 3.39 3.95 3.01 4.66 

Average time layer 5 

[d] 

0.35 0.46 0.47 1.70 0.75 0.47 0.86 

Average time layer 6-9 

[d] 

2.25 3.10 3.07 3.64 3.97 3.13 4.85 

Average time layer 10 

[d] 

0.57 0.71 0.78 0.91 0.96 0.72 1.38 

Total 

[d] 

5.28 7.00 7.30 9.64 9.63 7.33 11.75 

% Reduction Total VOCs 

 

81.7% 89.6% 90.2% 90.3% 90.0% 88.8% 95.6% 

Layer 1 Concentration PCE 

[mg L
-1

] 

0.067 0.044 0.028 0.027 0.027 0.027 0.033 

Layer 1 Concentration TCE 

[mg L
-1

] 

0.086 0.044 0.052 0.051 0.053 0.053 0.058 

Layer 1 Concentration DCE 

[mg L
-1

] 

0.004 0.002 0.003 0.003 0.003 0.003 0.003 

Layer 1 Concentration VC 

[mg L
-1

] 

1.42E-

05 

0.94E-

05 

1.32E-

05 

1.62E-

05 

1.01E-

05 

1.36E-

05 

1.02E-

05 

Note:  “% actual HRT < nominal HRT” is the percentage of MODPATH water particles in a release of a 

total of 1,000 particles that had a residence time less than the nominal hydraulic residence time.  The 

measure is useful in determining if a RTDF with a high tau due to significant tailing actually represents an 

improvement over baseline. 

 

 

 The MODPATH average time by layer data show that the water spent an average 

of 1.70 days in layer 5 in the Layer 5 Gravel model (Table 23).  This is almost five times 

the 0.35 days spent in layer 5 for the baseline model, and exceeds every other model.  
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Comparing Figure 19 and Figure 17, it appears that the layer 5 gravel is having the 

intended effect of capturing and redistributing the three spike-shaped head profiles 

observed in the No Gravel 3 Pipes model.  Furthermore, the effect occurs well below 

layer 5. 

 The average time spent in layer 5 in the Layer 5 Gravel 12 Pipes model was 

anticipated to be close to the 1.70 days observed in the Layer 5 Gravel 3 Pipes model, but 

the value was only 0.75 days.  While this is greater than the values for the other models, 

with the exception of the 4 Pipes Shutoff model, it is less than half the value for the Layer 

5 Gravel model.  This is due to the much more evenly distributed head profile observed 

in the Layer 5 Gravel model with 12 influent pipes compared to the 3 influent pipes 

model (the orange contour line in Figure 20 barely extends into layer 8, while the same 

contour line in Figure 19 extends well into layer 8).  The high value for the Layer 5 

Gravel 3 Pipes model was caused by the time required by the layer 5 gravel to laterally 

dissipate this differential head, while the relatively low value observed in the Layer 5 

Gravel 12 Pipes model is due to the lower head differential. 

All models achieved significant improvements over baseline with respect to 

hydraulic performance.  Mean hydraulic residence time increased significantly (between 

8.62 to 9.44 days, compared to 6.19 days under the Baseline Model), and the percentage 

of MODPATH water particles with hydraulic residence time less than the nominal 

hydraulic residence time also decreased (between 68.3% to 77.8%, compared to 88.9% 

under the Baseline Model).   

 With the exception of degradation of VC in the Layer 5 Gravel 3 Pipes, all models 

performed better than baseline with respect to treatment efficiency, as measured by layer 
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1 contaminant concentration.  Figure 21 is a graph of percent reduction in total VOCs vs. 

mean residence time.   

 

 

 

 

 

 

 

 

 

 

 

 

 Although the expected jump in % reduction in total VOCs is seen, almost the 

entire increase in treatment efficiency occurs over a very small increase in mean 

hydraulic residence time, from 6.19 days to 6.89 days.  Between 6.89 days and 17.45 

days, treatment efficiency is essentially unchanged. 

 To examine this, we make use of Equation (27), which can be used to predict the 

course of any first-order irreversible reaction, given only the residence time distribution 

function and the reaction rate constant (Clark, 2009).   

 

Figure 21:  Percent Reduction in Total VOCs vs. Tau 
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 (27) 

 

where, 

   
    

   
: Reduction in contaminant concentration C [-] 

 

 k: Degradation rate constant [d
-1

] 

 f(t): Residence Time Distribution Function [T
-1

] 

 

 Equation (27) assumes only one contaminant with only one degradation rate 

constant, which doesn’t apply to the current case, where sequential decay and multiple 

degradation rate constants are modeled.  However, for purposes of illustration, Equation 

(27) was applied to the Residence Time Distribution Functions for both the Baseline 

model (tau = 6.19 days) and the No Gravel 12 Pipes model (tau = 9.40 days) with four 

degradation rate constants (0.001, 0.01, 0.1, and 0.8 d
-1

) which roughly correspond to the 

range of degradation rate constants for anaerobic decay of PCE (Suarez and Rifai, 1999).  

Figure 22 displays the results.  At very low values for k, there is no appreciable 

difference between the two models (0.006% for the Baseline model, 0.009% for the No 

Gravel 12 Pipes model).  This is because for the values of tau used in the two models, the 

degradation time scale, as approximated by the reciprocal of the rate constant, is too large 

to show any difference between the models.  At very high values for k, there is also no 

appreciable difference between the two models (94.7% for the Baseline model, 97.0% for 

the No Gravel 12 Pipes model).  This is because the degradation time scale is much 

smaller than tau.  It is only when the values of tau (6.19 and 9.40 days) and the 
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degradation time constant (10 days) are similar that there is a noticeable difference in 

performance predicted by the two models (42.2% for the Baseline model, 53.4% for the 

No Gravel 12 Pipes model). 

 The behavior of Figure 21 is now understood in terms of the relationship between 

tau, which ranges from 6.19 days to 17.45 days; and the degradation constant, which can 

be approximated by the value used for anaerobic decay of PCE in the model, 0.40 d
-1

.  

The time constant for this value is approximately 2.5 days, so an increase in tau from 

6.19 to 6.89 is significant, while an increase from 9.40 to 17.45 is not. 

 

 

Figure 22:  Percent Concentration Reduction vs. Degradation Rate Constant 
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V. Conclusions and Recommendations 

 

5.1 Summary 

 The goal of this research effort was to investigate how the hydraulics of uVFTWs 

affects treatment efficiency.  Specifically, the impact of hydraulic short-circuiting upon 

treatment efficiency was examined.  Several engineering design changes were also 

evaluated with respect to their impact on the hydraulic behavior of the uVFTW and their 

impact on treatment efficiency.  This study confirms the existence of hydraulic short-

circuiting determined by prior research by Entingh (2002), Blalock (2003), and Corbin 

(2008).  Furthermore, this study suggests that some simple design changes, such as 

omitting the bottom layer gravel and introducing the influent via 12 influent pipes instead 

of 3, would significantly improve the hydraulic performance of the uVFTW.  The impact 

on treatment efficiency of the improvement in hydraulic performance is significant, but 

occurs over a very small increase in mean hydraulic residence time, from 6.19 days to 

6.89 days.  Further increases in mean hydraulic residence time, even approaching the 

nominal hydraulic residence time, result in minimal increases in treatment efficiency.   

 The key insight of this research is that, during the design or pilot-scale stage of 

uVFTW development, studies must be conducted to quantify contaminant degradation 

kinetics to determine an appropriate range of hydraulic residence time to ensure that the 

uVFTW operates at an optimum level.  It should be noted that improving the mean 

hydraulic residence time into the range where further increases in treatment efficiency do 

not appear is not necessarily undesirable.  However, when the design changes necessary 

to bring about such hydraulic improvements are costly, they should be avoided. 



 

89 

5.2 Study Strengths, Weaknesses, and Limitations 

 The main strength of this study was its use of state-of-the-art modeling techniques 

to simulate the potential impact of alternative uVFTW designs on performance.  The 

wetland model enabled us to evaluate how design changes resulted in changes in 

hydraulic performance, and how hydraulic performance impacted overall treatment 

efficiency.  These results should therefore be helpful in guiding designs of future 

uVFTWs. 

 The main limitation of this study was that, as a modeling study, there is no 

assurance that the model reflects reality.  The uVFTW at WPAFB and the prior research 

conducted into the degradation and hydraulics inspired the current research, but there was 

no quantitative match to either the hydraulic performance or the degradation profile of 

the wetland.  Furthermore, all models have built-in assumptions which may lead to 

invalid results.  Assumptions such as isotropy may need to be examined more carefully in 

conjunction with a careful analysis of the construction techniques used in building the 

wetland.   

 

5.3 Recommendations for Future Study 

 The proposed engineering solutions suggested in this study required only 

imagination to develop.  Presumably there are many other possible solutions, and these 

could be tested in future studies using the same approach taken in this study.  One idea to 

test is to lay down sheets of impermeable geomembrane within the wetland, with layers 

of dirt separating them.  With the proper design, water should be forced to flow in a 
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serpentine manner back and forth as it moves upward through the wetland (think waiting 

in line at Disneyland).  This should increase hydraulic residence time. 

 Studies could be conducted focusing on RT3D to model degradation.  RT3D 

allows incorporation of factors such as substrate limitations, rhizosome oxygenation, and 

oxidation-reduction conditions.  This would require significantly more computational 

power than a typical desktop has, as well as specific programming of RT3D.   

 For any research effort involving the use of modeling software, the student should 

seek out training in the use of that software as early as possible.  If GMS is used, training 

should be sought out for MODFLOW and GMS, including appropriate sub-modules of 

both MODFLOW and GMS. 

 

5.4 Conclusion 

 This study has demonstrated that some proposed engineering solutions to the 

problem of hydraulic short-circuiting could be effective at mitigating the problem, while 

also improving treatment efficiency.  The conclusion that can be drawn from this is that 

some of the proposed engineering solutions should be incorporated into future uVFTW 

designs.  Omitting the bottom gravel layer and introducing the influent via many tightly 

spaced pipes rather than a few pipes with more space between them; and incorporating 

shutoff valves so that small sections of the influent piping can be shut down if hydraulic 

short-circuiting is later discovered in a particular area of the wetland; are two specific 

design changes that are general enough to be included in future wetland designs. 
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 Given that the proposed engineering solutions are inexpensive and easy to 

incorporate into future designs, there is value in conducting model studies of the 

effectiveness of such proposed solutions, regardless whether the outcome is positive or 

negative.  Also, degradation kinetics need to be quantitatively understood in order to 

determine an optimum range for hydraulic residence time, and to ensure that resources 

are not wasted in an attempt to improve hydraulic performance where no improvement in 

degradation performance will be achieved.  Hopefully, this study will serve to guide 

designs of future uVFTWs. 
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Appendix A:  Residence Time Distribution Functions 

 

 

 

Figure 23:  RTDF No Gravel 3 Pipes Model 

 
 

 

 

 

Figure 24:  RTDF No Gravel 12 Pipes Model 
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Figure 25:  RTDF Layer 5 Gravel Model 

 
 

 

 

 

Figure 26:  RTDF Layer 5 Gravel 12 Pipes Model 
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Figure 27:  RTDF Row 30 Shutoff Model 

 
 

 

 

 

Figure 28:  RTDF Rows 24-30 Shutoff Model 
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Appendix B:  Interpolated Hydraulic Conductivity Contour Plots 

 

Figure 29:  Interpolated Hydraulic Conductivity Contours (Kriging) 

 
 

 

Figure 30:  Interpolated Hydraulic Conductivity Contours (Inverse Distance Weighted) 
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Figure 31:  Interpolated Hydraulic Conductivity Contours (Shepard) 
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